• 제목/요약/키워드: particle simulations

검색결과 452건 처리시간 0.036초

Particle swarm optimization-based receding horizon formation control of multi-agent surface vehicles

  • Kim, Donghoon;Lee, Seung-Mok;Jung, Sungwook;Koo, Jungmo;Myung, Hyun
    • Advances in robotics research
    • /
    • 제2권2호
    • /
    • pp.161-182
    • /
    • 2018
  • This paper proposes a novel receding horizon control (RHC) algorithm for formation control of a swarm of unmanned surface vehicles (USVs) using particle swarm optimization (PSO). The proposed control algorithm provides the coordinated path tracking of multi-agent USVs while preventing collisions and considering external disturbances such as ocean currents. A three degrees-of-freedom kinematic model of the USV is used for the RHC with guaranteed stability and convergence by incorporating a sequential Monte Carlo (SMC)-based particle initialization. An ocean current model-based estimator is designed to compensate for the effect of ocean currents on the USVs. This method is compared with the PSO-based RHC algorithms to demonstrate the performance of the formation control and the collision avoidance in the presence of ocean currents through numerical simulations.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Coin Drop Simulation based on Smoothed Particles Hydrodynamics

  • Kang, Han-bin;Pack, In-seok;Song, Ju-han;Lee, Dong-ug;Park, Min-hyeok;Lee, Seok-soon
    • 항공우주시스템공학회지
    • /
    • 제7권1호
    • /
    • pp.19-25
    • /
    • 2013
  • Smoothed Particle Hydrodynamics(SPH) method uses a grid of historical analysis and is not Lagrangian particles using the grid method. The Navier-Stokes equations were used to solve the viscous flow of the non-compressed. In this study, the numerical analysis of the three-dimensional Coin Drop Simulation using SPH method was performed, and the analysis results are compared with experimental results, and a similar behavior can be seen. The commercial program used was Abaqus/Explicit. SPH method to reduce the error by comparing the existing flow analysis or interpretation of the continuing research is needed in the future. That will enable real-time analysis of material obtained as a result of these numerical simulations similar to the actual flow phenomena, depending on the development of computer graphics technology to show visually. As a result, this method can be applied to the analysis fluid - structure interaction problems in a variety of fields.

입자결합모델을 이용한 횡방향 변형률 제어 하에서의 암석의 일축 및 삼축압축시험의 수치적 모사 (Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model)

  • 이창수;권상기;전석원
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.216-224
    • /
    • 2011
  • 본 연구에서는 Class II 거동에 대해 입자결합모델을 이용하여 수치해석적인 방법으로 살펴보았으며, 횡방향 변형률 제어 압축시험을 수치해석적으로 모사할 수 있는 방법을 제시하였다. 수치해석에서 사용된 미시변수는 스웨덴 Aspo Hard Rock Laboratory에서 수행한 일축압축시험을 이용하여 결정하였다. 제시된 수치해석 기법을 이용해 Aspo 암석의 Class II 거동을 효과적으로 모사할 수 있었으며, 수치해석의 결과는 실험실 시험 결과와 잘 일치하였다.

Use of water retention curves predicted from particle-size distribution data for simulation of transport of Benzo[a]pyrene in soil

  • 조영아;황상일;장용철;이동수
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.216-219
    • /
    • 2006
  • Water retention curve (WRC), one of soil hydraulic properties, is often approximated by property-transfer models (PTMs). Using the PTMs, we can estimate the WRCs from other physical properties such as particle-size distribution (PSD). The objective of this work was to investigate the performance of two PTMs with different origins for numerical simulations on transport of Benzo[a]pyrene in a soil. To do this, we chose both PTMs with different origins, i.e., (1) the lognormal distribution model (L anti NL models), and (2) the modified $Kov\'{a}cs$ model (MK model). The MK model showed tile worse performance in estimation of the WRCs. When transport of B[a]P was simulated, the MK model predicted to move farther than the L and NL models did, indicating that transport of B[a]P in a soil can be greatly influenced by the choice of PTMs.

  • PDF

액체-액체 동축형 스월 인젝터의 수치적 모사를 위한 SPH 코드 개발 및 검증 (SPH Code Development and Validation for Numerical Simulation of Liquid-Liquid Swirl Coaxial Injector)

  • 김유천;;여재익
    • 한국항공우주학회지
    • /
    • 제43권1호
    • /
    • pp.8-22
    • /
    • 2015
  • 지금까지 인젝터의 수치적 시뮬레이션은 대부분 Eulerian 기법의 바탕위에서 이루어져 왔다. 그러나 액체제트의 미립화현상과 복잡한 공기와의 경계면 변화를 나타내는데 있어 기존의 기법들이 갖는 선천적인 단점이 존재하며 따라서 본 연구에서는 새로운 Smoothed Particle Hydrodynamics(SPH)라는 입자 기법을 도입하였다. 수치적 시뮬레이션을 위해 먼저 해석을 위한 SPH 코드를 개발하였으며 본 논문에서는 인젝터 문제를 정확하게 나타내는데 있어 필수적인 알고리즘중 하나인 다상유동모사에 대한 검증문제가 제시 되어 있다. 마지막으로 다양한 인젝터 종류 중 하나인 액체-액체 동축형 스월 인젝터에 대한 시뮬레이션이 수행되었으며 실제실험과의 비교를 진행하였다.

MOPSO-based Data Scheduling Scheme for P2P Streaming Systems

  • Liu, Pingshan;Fan, Yaqing;Xiong, Xiaoyi;Wen, Yimin;Lu, Dianjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5013-5034
    • /
    • 2019
  • In the Peer-to-Peer (P2P) streaming systems, peers randomly form a network overlay to share video resources with a data scheduling scheme. A data scheduling scheme can have a great impact on system performance, which should achieve two optimal objectives at the same time ideally. The two optimization objectives are to improve the perceived video quality and maximize the network throughput, respectively. Maximizing network throughput means improving the utilization of peer's upload bandwidth. However, maximizing network throughput will result in a reduction in the perceived video quality, and vice versa. Therefore, to achieve the above two objects simultaneously, we proposed a new data scheduling scheme based on multi-objective particle swarm optimization data scheduling scheme, called MOPSO-DS scheme. To design the MOPSO-DS scheme, we first formulated the data scheduling optimization problem as a multi-objective optimization problem. Then, a multi-objective particle swarm optimization algorithm is proposed by encoding the neighbors of peers as the position vector of the particles. Through extensive simulations, we demonstrated the MOPSO-DS scheme could improve the system performance effectively.

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

Electron Microburst Generation by Wave Particle Interaction

  • Lee, Jae-Jin;Hwang, Jung-A;Parks, George K.;Min, Kyoung-Wook;Lee, En-Sang
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.43.2-43.2
    • /
    • 2009
  • Electron microbursts are the intense electron precipitation which durations are less than one second. We measured the energy spectra of the microbursts from 170 keV to 340 keV with solid state detectors aboard the low-altitude (680km), polar-orbiting Korean STSAT-1 (Science and Technology SATellite). The data showed that the loss cone at these energies is empty except when microbursts abruptly appear and fill the loss cone in less than 50 msec. This fast loss cone filling requires pitch angle diffusion coefficients larger than ~ 10-2rad2/sec, while ~10-5 rad2/sec was proposed by a wave particle interaction theory. We recalculated the diffusion coefficient, and reviewed of electron microburst generation mechanism with test particle simulations. This simulation successfully explained how chorus waves make pitch angle diffusion within such short period. From considering the resonance condition between wave and electrons, we also showed ~ 100 keV electrons could be easily aligned to the magnetic field, while ~ 1MeV electrons filled loss cone partially. This consideration explained why precipitating microbursts have lower e-folding energy than that of quasi-trapped electrons, and supports the theory that relativistic electron microbursts that have been observed by satellite in-situ measurement have same origin with ~100 keV electron microbursts that have been usually observed by balloon experiments.

  • PDF

Techno-Economic Optimization of a Grid-Connected Hybrid Energy System Considering Voltage Fluctuation

  • Saib, Samia;Gherbi, Ahmed;Kaabeche, Abdelhamid;Bayindir, Ramazan
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.659-668
    • /
    • 2018
  • This paper proposes an optimization approach of a grid-connected photovoltaic and wind hybrid energy system including energy storage considering voltage fluctuation in the electricity grid. A techno-economic analysis is carried out in order to minimize the size of hybrid system by considering the benefit-cost. Lithium-ion battery type is used for both managing the electricity selling to the grid and reducing voltage fluctuation. A new technique is developed to limit the voltage perturbation caused by the solar irradiance and the wind speed through determining the state-of-charge of battery for every hour of a day. Improved particle swarm optimization (PSO) methods, referred to as FC-VACPSO which combines Fast Convergence Particle Swarm Optimization (FCPSO) method and Variable Acceleration Coefficient Based Particle Swarm Optimization (VACPSO) method are used to solve the optimization problem. A comparative study has been performed between standard PSO method and PSO based methods to extract the best size with the benefit cost. A sensitivity analysis has been studied for different kinds and costs of batteries, by considering variable and constant state-ofcharge of battery. The simulations, performed under Matlab environment, yield good results using the FC-VACPSO method regarding the convergence and the benefit cost of the hybrid system.