DOI QR코드

DOI QR Code

Particle swarm optimization-based receding horizon formation control of multi-agent surface vehicles

  • Kim, Donghoon (Seadronix) ;
  • Lee, Seung-Mok (Department of Mechanical and Automotive Engineering, Keimyung University) ;
  • Jung, Sungwook (Urban Robotics Lab., Department of Civil Engineering, Korea Advanced Institute for Science and Technology) ;
  • Koo, Jungmo (Urban Robotics Lab., Department of Civil Engineering, Korea Advanced Institute for Science and Technology) ;
  • Myung, Hyun (Urban Robotics Lab., Department of Civil Engineering, Korea Advanced Institute for Science and Technology)
  • Received : 2018.06.13
  • Accepted : 2018.06.18
  • Published : 2018.06.25

Abstract

This paper proposes a novel receding horizon control (RHC) algorithm for formation control of a swarm of unmanned surface vehicles (USVs) using particle swarm optimization (PSO). The proposed control algorithm provides the coordinated path tracking of multi-agent USVs while preventing collisions and considering external disturbances such as ocean currents. A three degrees-of-freedom kinematic model of the USV is used for the RHC with guaranteed stability and convergence by incorporating a sequential Monte Carlo (SMC)-based particle initialization. An ocean current model-based estimator is designed to compensate for the effect of ocean currents on the USVs. This method is compared with the PSO-based RHC algorithms to demonstrate the performance of the formation control and the collision avoidance in the presence of ocean currents through numerical simulations.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Aguiar, A.P. and Pascoal, A.M. (2007), "Dynamic positioning and way-point tracking of underactuated AUVs in the presence of ocean currents", J. Control, 80(7), 1092-1108. https://doi.org/10.1080/00207170701268882
  2. Almeida, J., Silvestre, C. and Pascoal, A. (2010), "Cooperative control of multiple surface vessels in the presence of ocean currents and parametric model uncertainty", J. Robust Nonlin. Control, 20(14), 1549-1565. https://doi.org/10.1002/rnc.1526
  3. Arrichiello, F., Chiaverini, S. and Fossen, T.I. (2006), "Formation control of underactuated surface vessels using the null-space-based behavioral control", Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, October.
  4. Balch, T. and Arkin, R.C. (1998), "Behavior-based formation control for multirobot teams", IEEE T. Robot. Autom., 14(6), 926-939. https://doi.org/10.1109/70.736776
  5. Benjamin, M.R., Leonard, J.J., Curcio, J.A. and Newman, P.M. (2006), "A method for protocol-based collision avoidance between autonomous marine surface craft", J. Field Robot., 23(5), 333-346. https://doi.org/10.1002/rob.20121
  6. Borhaug, E., Pavlov, A., Panteley, E. and Pettersen, K.Y. (2011), "Straight line path following for formations of underactuated marine surface vessels", IEEE T. Control Syst. Technol., 19(3), 493-506. https://doi.org/10.1109/TCST.2010.2050889
  7. Breivik, M., Hovstein, V.E. and Fossen, T.I. (2008), "Ship formation control: A guided leader-follower approach", Proceedings of the 17th IFAC World Congress, Seoul, Korea, July.
  8. Burger, M., Pavlov, A., Borhaug, E. and Pettersen, K.Y. (2009), "Straight line path following for formations of underactuated surface vessels under influence of constant ocean currents", Proceedings of the American Control Conference, St. Louis, Missouri, U.S.A., June.
  9. Chen, Y. and Wang, Z. (2005), "Formation control: A review and a new consideration", Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, July.
  10. Chen, J., Sun, D., Yang, J. and Chen, H. (2001), "Leader-follower formation control of multiple nonholonomic mobile robots incorporating a receding-horizon scheme", J. Robot. Res., 29(6), 727-747.
  11. Duan, H. and Liu, S. (2010), "Non-linear dual-mode receding horizon control for multiple unmanned air vehicles formation flight based on chaotic particle swarm optimisation", IET Control Theor. Appl., 4(11), 2565-2578. https://doi.org/10.1049/iet-cta.2009.0256
  12. Duan, H., Luo, Q., Shi, Y. and Ma, G. (2013), "Hybrid particle swarm optimization and genetic algorithm for multi-uav formation reconfiguration", IEEE Comput. Intel. Mag., 8(3), 16-27. https://doi.org/10.1109/MCI.2013.2264577
  13. Dunbar, W.B. and Murray, R.M. (2006), "Distributed receding horizon control for multi-vehicle formation stabilization", Automatica, 42(4), 549-558. https://doi.org/10.1016/j.automatica.2005.12.008
  14. Fahimi, F. (2007), "Non-linear model predictive formation control for groups of autonomous surface vessels", J. Control, 80(8), 1248-1259. https://doi.org/10.1080/00207170701280911
  15. Fahimi, F. (2007), "Sliding-mode formation control for underactuated surface vessels", IEEE T. Robot., 23(3), 617-622. https://doi.org/10.1109/TRO.2007.898961
  16. Fiorelli, E., Leonard, N.E., Bhatta, P., Paley, D.A., Bachmayer, R. and Fratantoni, D.M. (2006), "Multi-AUV control and adaptive sampling in Monterey Bay", IEEE J. Ocean. Eng., 31(4), 935-948. https://doi.org/10.1109/JOE.2006.880429
  17. Fontes, F.A. (2001), "A general framework to design stabilizing nonlinear model predictive controllers", Syst. Control Lett., 42(2), 127-143. https://doi.org/10.1016/S0167-6911(00)00084-0
  18. Fossen, I.T. (2002), Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles, in Marine Cybernetics.
  19. Fukushima, H., Kon, K. and Matsuno, F. (2013), "Model predictive formation control using branch-andbound compatible with collision avoidance problem, IEEE T. Robot., 29(5), 1308-1317. https://doi.org/10.1109/TRO.2013.2262751
  20. Ghommam, J. and Mnif, F. (2009), "Coordinated path-following control for a group of underactuated surface vessels", IEEE T. Ind. Electron., 56(10), 3951-3963. https://doi.org/10.1109/TIE.2009.2028362
  21. Gu, D. and Hu, H. (2005), "A stabilizing receding horizon regulator for nonholonomic mobile robots", IEEE T. Robot., 21(5), 1022-1028. https://doi.org/10.1109/TRO.2005.851357
  22. Gu, D. and Hu, H. (2006), "Receding horizon tracking control of wheeled mobile robots", IEEE T. Control Syst. Technol., 14(4), 743-749. https://doi.org/10.1109/TCST.2006.872512
  23. Ihle, I.A.F., Jouffroy, J. and Fossen, T.I. (2006), "Formation control of marine surface craft: A Lagrangian approach", IEEE J. Ocean. Eng., 31(4), 922-934. https://doi.org/10.1109/JOE.2006.880426
  24. Ihle, I.A.F., Skjetne, R., and Fossen, T.I. (2004), "Nonlinear formation control of marine craft with experimental results", Proceedings of the 43rd IEEE Conference on Decision and Control, Nassau, Bahamas, May.
  25. Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", Proceedings of the 1995 IEEE International Conference on Neural Networks, Perth, WA, Australia, December.
  26. Kim, H., Kim, D., Kim, H., Shin, J.U. and Myung, H. (2016), "An extended any-angle path planning algorithm for maintaining formation of multi-agent jellyfish elimination robot system", J. Control Autom. Syst., 14(2), 598-607. https://doi.org/10.1007/s12555-014-0349-0
  27. Lee, S.M. and Myung, H. (2015), "Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots", IET Control Theor. Appl., 9(14), 2075-2083. https://doi.org/10.1049/iet-cta.2015.0071
  28. Lee, S.M., Kim, H., Lee, S. and Myung, H. (2014), "Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots", Adv. Robot. Res., 1(1), 41-59. https://doi.org/10.12989/arr.2014.1.1.041
  29. Lee, S.M., Kim, H., Myung, H. and Yao, X. (2013), "Cooperative coevolutionary algorithm-based model predictive control guaranteeing stability of multirobot formation", IEEE T. Control Syst. Technol., 23(1), 37-51. https://doi.org/10.1109/TCST.2014.2312324
  30. Liu, J.S. and Chen, R. (1998), "Sequential Monte Carlo methods for dynamic systems", J. Am. Stat. Assoc., 93(443), 1032-1044. https://doi.org/10.1080/01621459.1998.10473765
  31. Moral, P.D. (1996), "Non-linear filtering: Interacting particle resolution", Markov Proc. Related Fields, 2(4), 555-581.
  32. Moral, P.D., Doucet, A. and Jasra, A. (1996), "Sequential Monte Carlo samplers", J. Royal Stat. Soc. Ser. B Stat. Met., 68(3), 411-436.
  33. Oh, S.R. and Sun, J. (2010), "Path following of underactuated marine surface vessels using line-of-sight based model predictive control", Ocean Eng., 37(2-3), 289-295 https://doi.org/10.1016/j.oceaneng.2009.10.004
  34. Peng, Z., Wang, D., Wang, H., and Wang, W. (2014), "Coordinated formation pattern control of multiple marine surface vehicles with model uncertainty and time-varying ocean currents", Neural Comput. Appl., 25(7-8), 1771-1783. https://doi.org/10.1007/s00521-014-1668-z
  35. Reif, J.H. and Wang, H. (1999), "Social potential fields: A distributed behavioral control for autonomous robots", Robot. Auton. Syst., 27(3), 171-194. https://doi.org/10.1016/S0921-8890(99)00004-4
  36. Shojaei, K. (2015), "Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque", Ocean Eng., 105, 196-205. https://doi.org/10.1016/j.oceaneng.2015.06.026
  37. Skjetne, R., Ihle, I.A.F. and Fossen, T.I. (2003), "Formation control by synchronizing multiple maneuvering systems", Proceedings of the 6th IFAC Conference on Manoeuvering and Control of Marine Craft, Girona, Spain, September.
  38. Wang, Y., Yan, W. and Yan, W. (2009), "A leader-follower formation control strategy for AUVs based on line-of-sight guidance", Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, Changchun, China, August.