• Title/Summary/Keyword: particle motion

Search Result 462, Processing Time 0.029 seconds

Person Tracking with a Mobile Robot using Particle Filters in Complex Environment (복잡한 환경에서 파티클 필터를 이용한 자율이동로봇의 사람추적방법)

  • Kwon, Ho-Sang;Kim, Young-Joong;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2796-2798
    • /
    • 2005
  • This Paper presents a method that a mobile robot can track persons in complex environment using particle filters. The topic of person following using mobile robot is researched in many different areas. The main problems of following a person are real time constraint, motion change of person during the tracking and occlusion with other objects. We present appearance adaptive models in a particle filter to realize robust visual tracking algorithm. Adaptive appearance model can handle occlusion with other people while target is moving.

  • PDF

Numerical Investigation of Contamination Particle's Trajectory in a Head/slider Disk Interface (헤드/디스크 인터페이스 내에서 오염 입자의 거동에 관한 수치적 연구)

  • Park, Hee-Sung;Hwang, Jung-Ho;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.477-484
    • /
    • 2000
  • Microcontamination caused by particle deposition on the head disk interface threatens the reliability of hard disk drive. Design of slider rail to control contamination becomes an important issue in magnetic recording. In this paper, how particles adhere to the slider and the disk is examined. To investigate accumulation mechanism of the particles, trajectory of the particles in a slider/disk interface is simulated with considering various forces including drag force, gravitational force, Saffman lift force, and electrostatic force. It is found that the charged particles can easily adhere to the slider or disk surface, if an electric field exists between the slider and the disk. It is supposed that the vertical motion of the particles should be related with not only Saffman force but also electrostatic force.

Lagrangian Particle Model for Dense Gas Dispersion (고밀도 가스 확산 예측을 위한 라그란지안 입자 모델)

  • Ko, S.;Lee, C.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.899-904
    • /
    • 2003
  • A new model for dense gas dispersion is formulated within the Lagrangian framework. In several accidental released situations, denser-than-air vapour clouds are formed which exhibit dispersion behavior markedly different from that observed for passive atmospheric pollutants. For relevant prediction of dense gas dispersion, the gravity and entrainment effects need to implemented. The model deals with negative buoyancy which is affected by gravity. Also, the model is subjected to entrainment. The mean downward motion of each particle was accounted for by considering the Langevin equation with buoyancy correction term.

  • PDF

Measurement of Brownian motion of nanoparticles in suspension using a network-based PTV technique

  • Banerjee A.;Choi C. K.;Kihm K. D.;Takagi T.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.91-110
    • /
    • 2004
  • A comprehensive three-dimensional nano-particle tracking technique in micro- and nano-scale spatial resolution using the Total Internal Reflection Fluorescence Microscope (TIRFM) is discussed. Evanescent waves from the total internal reflection of a 488nm argon-ion laser are used to measure the hindered Brownian diffusion within few hundred nanometers of a glass-water interface. 200-nm fluorescence-coated polystyrene spheres are used as tracers to achieve three-dimensional tracking within the near-wall penetration depth. A novel ratiometric imaging technique coupled with a neural network model is used to tag and track the tracer particles. This technique allows for the determination of the relative depth wise locations of the particles. This analysis, to our knowledge is the first such three-dimensional ratiometric nano-particle tracking velocimetry technique to be applied for measuring Brownian diffusion close to the wall.

  • PDF

Smoothed Particle Hydrodynamics Code Basics

  • MONAGHAN J. J.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.203-207
    • /
    • 2001
  • SPH is the shorthand for Smoothed Particle Hydrodynamics. This method is a Lagrangian method which means that it involves following the motion of elements of fluid. These elements have the characteristics of particles and the method is called a particle method. A useful review of SPH (Monaghan 1992) gives the basic technique and how it can be applied to numerous problems relevant to astrophysics. You can get some basic SPH programs from http) /www.maths.monash.edu.au/jjm/sphlect In the present lecture I will assume that the student has studied this review and therefore understands the basic principles. In today's lecture I plan to approach the equations from a different perspective by using a variational principle.

  • PDF

Recent Development of Analytical Solutions to Brownian Aerosol Coagulation in Different Particle Size Regimes

  • Park, Seong-Hun;Kim, Hyun-Tae;Lee, Kyoo-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.E
    • /
    • pp.65-71
    • /
    • 1999
  • The log-normal size distribution theories developed recently for aerosol coagulation are reviewed. The analytical solutiosn to Brownian coagulation developed recently for various particle size regimes are reviewed. In order to describe the evolution of the size distribution of a coagulating aerosol over the entire size range, the analytical solutions developed individually for the free-molecule regime, the transition regime, the nearcontinuum regime, and the continuum regime have been combined. The work described here represents the first analytical solution to the aerosol coagulation problem covering the entire particle size range.

  • PDF

Dynamic state estimation for identifying earthquake support motions in instrumented structures

  • Radhika, B.;Manohar, C.S.
    • Earthquakes and Structures
    • /
    • v.5 no.3
    • /
    • pp.359-378
    • /
    • 2013
  • The problem of identification of multi-component and (or) spatially varying earthquake support motions based on measured responses in instrumented structures is considered. The governing equations of motion are cast in the state space form and a time domain solution to the input identification problem is developed based on the Kalman and particle filtering methods. The method allows for noise in measured responses, imperfections in mathematical model for the structure, and possible nonlinear behavior of the structure. The unknown support motions are treated as hypothetical additional system states and a prior model for these motions are taken to be given in terms of white noise processes. For linear systems, the solution is developed within the Kalman filtering framework while, for nonlinear systems, the Monte Carlo simulation based particle filtering tools are employed. In the latter case, the question of controlling sampling variance based on the idea of Rao-Blackwellization is also explored. Illustrative examples include identification of multi-component and spatially varying support motions in linear/nonlinear structures.

Particle Tracking Microrheology and its application to dilute viscoelastic materials (입자추적 미세유변학의 묽은 점탄성 물질에 대한 응용)

  • Yim Yoon-Jae;Lee Sung-Sik;Ahn Kyung-Hyun;Lee Seung-Jong
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.61-64
    • /
    • 2006
  • Soft materials, such as polymer solutions, gels and filamentous protein materials in cells, show complicated behavior due to their complex structures and dynamics with multiple characteristic time and length scales. Several complementary techniques have been developed to measure viscoelastic of soft materials. Especially, particle tracking microrheology, using the Brownian motion of particles in a medium to get rheological properties, has recently been improved both theoretically and experimentally. Compared to other conventional methods, video particle tracking microrheology has some advantages such as small sample volume, detecting spatial variation of local rheological properties, and less damage to sample materials. With these advantages, microrheology is more suitable to measure the properties of complex materials than other mechanical rheometries.

  • PDF

Extraction of Sizes and Velocities of Spray Droplets by Optical Imaging Method

  • Choo, Yeonjun;Kang, Boseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1236-1245
    • /
    • 2004
  • In this study, an optical imaging method was developed for the measurements of the sizes and velocities of droplets in sprays. Double-exposure single-frame spray images were captured by the imaging system. An image processing program was developed for the measurements of the sizes and positions of individual particles including separation of the overlapped particles and particle tracking and pairing at two time instants. To recognize and separate overlapping particles, the morphological method based on watershed segmentation as well as separation using the perimeter and convex hull of image was used consecutively. Better results in separation were obtained by utilization of both methods especially for the multiple or heavily-overlapped particles. The match probability method was adopted for particle tracking and pairing after identifying the positions of individual particles and it produced good matching results even for large particles like droplets in sprays. Therefore, the developed optical imaging method could provide a reliable way of analyzing the motion and size distribution of droplets produced by various sprays and atomization devices.

Implementation of Interactive Media Art Work using Particle System based on Hand Gesture Detection (핸드 제스처(Hand Gesture) 인식 기반의 파티클 시스템(Particle System)을 이용한 인터랙티브 미디어아트 작품구현)

  • Oh, Minjeong;Seo, Yongdeuk
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.39-41
    • /
    • 2018
  • 본 논문은 본인이 제작한 라는 인터랙티브 미디어 아트 작품에 관련한 글이다. 발전하는 디지털 기술 안에서 아날로그 감성을 이끌어내기 위한 작품 제작 방법으로 손으로 그린 나뭇잎을 입자로 사용한 파티클 시스템을 이용하였다. 그리고 NUI 인터페이스인 립모션 센서를 사용해 자연스러운 손 동작 인식을 하여 파티클 시스템과 연동하였다. 관람자는 바람을 일으키는 손 동작을 하며 가을 풍경과 같은 나뭇잎 파티클의 변화를 느끼게 되고, 계속되는 손동작에 따라 나타난 새로운 동영상을 감상하며 잃어버린 감성을 느끼게 된다. 아날로그 컨텐츠와 디지털 기술의 융합은 관람자에게 친근한 접근과 감성을 자극함으로써 인터렉티브 미디어 아트의 새로운 확장의 가능성을 보여준다.

  • PDF