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ABSTRACT

SPH is the shorthand for Smoothed Particle Hydrodynamics. This method is a Lagrangian method which means
that it involves following the motion of elements of fluid. These elements have the characteristics of particles and
the method is called a particle method. A useful review of SPH (Monaghan 1992) gives the basic technique and
how it can be applied to numerous problems relevant to astrophysics. You can get some basic SPH programs from

http://www.maths.monash.edu.au/ jjm/sphlect
In the present lecture I will assume that the student has studied this review and therefore understands the basic
principles. In today’s lecture I plan to approach the equations from a different perspective by using a variational

principle.
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I. SPH Interpolation

The SPH equations are based on interpolation from
particles. The integral interpolant of a field A(r) is
defined by

Ar(r) = /A(r’)W(r —r', h)dr, (1)

where the element of volume is dr, and W is a kernel
which is normalised over the volume

/VV(r—r’,h)dT: 1. (2)
The form of W is guided by the requirement that
lim W(r —r',h) =6(r — r'). (3)
h—o0

In this limit A; is the same as the original function
A(r). In the following it is convenient to interpret SPH
expressions having in mind a gaussian kernel of the
form (in one dimension)

!
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W(g,h) =

= (4)

o

The smoothing length h determines the resolution and
is proportional to the local particle spacing. It is con-
venient to choose W(q, k) to be an even function of q.
As a consequence, a Taylor series expansion of A(r')
about r in the integrand of (1) shows that, away from
boundaries, the error in A;(r) is of O(h?).

The integral interpolant can be approximated by a
splitting the fluid into small volume elements A7 each
with mass pA7, where p is a representative density for
the small fluid element. We can then approximate (1)

by the summation interpolant

As(r) = 37 LA (r —10), (5)
b

where the summation is over the particles, m; is the
mass of particle b, and p is the density at particle b at
position ry.

Provided the kernel is a differentiable function (5)
gives us an interpolation formula which can be differen-
tiated analytically. In the SPH method, spatial deriva-
tives are exact derivatives of interpolated quantities.
Grids are not needed except as a book keeping device
to find neighbouring particles.

In the following the subscript S to denote the sum-
mation interpolant will be dropped for convenience.
Further details of the approximations are given by
Monaghan (1992).

As an example of the SPH method the density at
particle a is given by replacing 4 in (4) by p. We find

Pa = ZmbWab, (6)
b

where W, denotes W (r, —rp, h). This shows that the
SPH density is a function of the coordinates which is
galilean invariant. In some contexts, it is convenient to
integrate the continuity equation

— =—pV - v. (7
where d/dt is the derivative following the motion. This

equation can be put in SPH form by first writing it as

%I“V'PV*_‘V'VP, (8)
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then, on replacing pv and p by their SPH equivalents
and taking the gradients, we find

dpq
dt

= — Zmb(vb - Va) ' vw‘ab- (9)
b

It is easy to check that (6) is a solution of (9). However,
differential equations have boundary or initial condi-
tions, and it is sometimes useful to use the differential
equations with initial, specified densities for the par-
ticles. An example would be the simulation of water
or metals. For these fluids the typical initial state is
constant density. If the summation is used the density
is smaller near a free surface and the equation of state
for these fluids would give a negative pressure (this is
the elastic pressure and it can be negative). It is much
better to assign the reference density and integrate the
continuity equation.

In SPH simulations it is customary to use a cubic
spline (see Monaghan 1992). Other kernels have been
considered, especially those which give higher order ac-
curacy for the integral interpolant. These have not had
widespread use for two reasons. The first is that the
particles become disordered and the summation inter-
polant may then be a poor approximation to the inte-
gral interpolant. The precise form and effect of this dis-
order depends on the dynamical system being studied.
The second is that higher order interpolation requires
kernels which change sign. In gas dynamics, especially
for strong shocks, these high order kernels can cause un-
dershoots which may produce negative densities. One
way to control this is to switch to a low order kernel
near the shock and use the high order kernel in regions
where the flow is smooth. There has been very little
work on this idea.

Another issue with the kernel is that in some simula-
tions the particles can clump. Couchman gets around
this by replacing the gradient of the kernel by its max-
imum (which for the cubic spline is at 2/(3h)).

In astrophysical applications of SPH the resolution
length h is determined by the local density and the res-
olution varies in space as well as time. In addition,
some authors have examined the effect of using kernels
with ellipsoidal symmetry to take account of the fact
that shock fronts, or other thin structures, require dif-
ferent resolution along and perpendicular to the thin
structure. The disadvantage of these kernels is that
the system does not then conserve angular momentum.

1I. The Lagrangian for compressible flow

The Lagrangian for compressible, non dissipative
flow is (Eckart 1960)

L= /p (%’UZ —u(p, s)) dr, (10)

where u(p, s) is the thermal energy per unit mass which
is a function of density p and entropy s. The SPH form

of (10) is
1, ‘
L= Zmb <§’Ug - u(pb,sb)> . (11)
b
where p
ro
2 = Ve (12)

The equations of motion follow from varying the ac-
tion keeping the entropy constant. From Lagrange’s
equations for particle a

d (8L oL
dt (a—v::) N (13)
we find p 5 5
Vo _ ou 14
a Eb:m’) <6p>s Bra’ (14)

Making use of the summation for the density (6),
and the first law of thermodynamics, the acceleration
equation (14) can be written

dva . Pa Pb
p7a —;mb (;:21— + E) Vo Was, _ (15)

where where P, is the pressure of particle a (which
can be calculated once the form of u(p,s) is given),
and V, denotes the gradient taken with respect to the
coordinates of particle a. Equation (153) is the SPH
equivalent of

dv P P
- _Lfvy,-v(= 1
dt p'zvp v(ﬂ)’ (16)
1
— _1VP 17
. (17)

which is the standard equation of motion.

These equations complete the SPH formulation of
the equations of motion for a non dissipative fluid. In
practice additional viscous terms and external forces
such as gravity are included. If the fluid is in a con-
tainer the container can be represented by boundary
forces (Monaghan 1994; Monaghan & Kos 1999).

III. Conservation Laws

The symmetry of the Lagrangian leads immediately
to the conservation laws. In particular, in the present
case where the entropy of each particle remains con-
stant, and the summation for the density is invariant to
translations and rotations, linear and angular momen-
tum are conserved. In the presence of external forces
this is no longer true in general. As a simple exam-
ple consider the invariance to translations. Let each
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particle have its position shifted by the arbitrary in-
finitesimal vector e. The change in the Lagrangian is
zero, therefore

5L“0_Zara , (18)
which becomes Y
€ Z o~ =0. (19)
But from Lagranges equations we can write this as
dt Z 8va 'v (20)
Since ¢ is arbitrary, we deduce the conservation of mo-
mentum oL
Z o (21)

In a similar way we can deduce the conservation of
angular momentum. If there is no explicit time depen-
dence in the Lagrangian energy is conserved.

The particle system 1s invariant to other transfor-
mations. Consider, for example figure 1 which shows a
set of particles each with the same mass and entropy
and a marked loop. Imagine each particle in the loop
being shifted to its neighbour’s position (in the same
sense around the loop) and given its neighbour’s veloc-
ity. Since the entropy is constant, nothing has changed,
and the Lagrangian is therefore invariant to this trans-
formation.

The change in L can be approximated by
oL oL
= ) —— -0V, 22
oL EJ: (ary r; + o, vj) , (22)
where j denotes the label of a particle on the loop. The
change in position and velocity are given by
0T = rjp — 1), (23)

and
5Vj = Vj+1 — Vj. (24)

Using Lagrange’s equations (13) we can rewrite (22) in
the form

s (%
(25)

and recalling that the particle masses are assumed iden-
tical, we deduce that

(rjp1 =) + vy (Vi — Vj)) =0,

d
7 > v (rj — ;) =0. (26)
i

so that

C= Z"j T - 1), (27)

is conserved to this approximation, for every loop. The
conservation is only approximate because the change to
the Lagrangian is discrete, and only approximated by
the first order terms. However, if the particles are suffi-
ciently close together (26) approximates the circulation
theorem to arbitrary accuracy. A related argument was
used by Feynman to establish from the invariance of the
wave function that circulation should be quantised.

‘The system is also invariant to the particles shifting
around the loop in the opposite sense. This gives an
approximation to the circulation with the opposite sign
to that above. If these two are combined (taking ac-
count of their signs so we subtract one from the other)
we get

d (tj4r —15-1)
P Z A 7 = 0. (28)
J
which is a better approximation to the circulation of
the continuous fluid. The errors in the discrete approx-
imation to the circulation theorem arise because of the
higher order terms in the change to the Lagrangian.

These results are mirrored in Salmon’s (1988) analy-
sis of Lagrangian and Hamiltonian methods in fluid me-
chanics. Salmon (1988), following Bretherton’s (1970)
work, establishes the conservation laws by appealing
to the invariance to particle interchange. However, be-
cause their analysis is within the context of the contln—
uum, it is more complicated than the derivation given
above.

IV. Dissipation

The previous analysis concerns the non dissipative
fluid. In standard SPH calculations viscous dissipation
is achieved by adding a term of the form (Monaghan
1992; 1997)

TabVab " Tab

[Tab]

ey = - (29)
to the pressure terms. The quantity o, is a positive
definite parameter which is invariant to the interchange
of a and b. It typically- has the form
QUg; '
Oab = _-Sia (30)
Pab

where the average density p,, = 0.5(ps + pp). The
signal velocity vg, is given by

Usig = Cq + Cp + 2|vab J|, (31)
where j = r,b/r,, and r,, = r, —rp. The viscosity can

be interpreted as an artificial pressure which is positive
when the particles are moving together (vq; - Tgp < 0).
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The acceleration equation (15) now becomes

dt p pab
(32)
Angular and linear momentum are conserved because
the viscous force is along the line joining the centres of
the SPH particles.
The viscosity term is excellent near shocks but dif-
fuses vorticity and angular momentum strongly. To
avoid this one technique is due to Balsara and involves

multiplying the viscosity term by a factor

Vv
(Vv +|V xv|]

(33)

Another method for reducing the viscosity away from
shocks is due to Morris and Monaghan (1997). They
give each particle its own o and allow the o to change
according to a simple differential equation.

g_o_‘__wo_)+5
dt T

; (34)

where 7 ~ h/cs, S is a source term proportional to
|V - v|, and aq is a reference value taken as ~ 0.1 by
Morris and Monaghan. The idea is to have a ~ 1
near shocks but smaller a ~ 0.1 away from shocks. If
smoothed velocities are used it appears to be possible
to have a ~ 0.01 in regions of smooth flow. Many
astrophysicists now use an alpha for each particle and
find that it improves their results significantly.

V. Various Applications

(a) Astrophysics

I will just list the authors without references. You
can check these at web sites. I apologise in advance to
to the very large number of people left off this list.

Accretion disks Murray (leicester U.K), Molteni
(Italy)

Stellar collisions Benz (Bern), Sills and Rosswog (Le-
icester) ‘

Galaxies (Hernquist, Barnes )

Cosmology (Katz, Walmsley and Bond)

Relativity (Siegler and Ruffert, Chow and Mon-
aghan)

Star Formation (Bates, Bonnell)

Planetesimal collisions (Benz and Asphaug)

(b) Non Astrophysics Applications

There are numerous applications of SPH to problems
outside astrophysics. These applications often allow
comparisons against experiment and they show that
SPH gives very good results in flow problems which
cannot be tackled successfully by other methods.

dvyg P, P, e(Vp—V,)?
= E myp <E+?—§—)+Hab VaWas.
b

(¢) Water Waves

The dynamics of waves can be studied with SPH
by using an equation of state which approximates the
elastic properties of water and ensures that the density
remains nearly constant (Monaghan 1994). Typically

— Pocs < p >7 N
P=—"2(—) —1), 35
5 ( p» ) (39)
where the speed of sound ¢, is chosen to be ~ 10 times
the largest speeds expected in the flow. In addition
the boundaries can be modelled using particles (real or
ghost). Examples are the simulations of solitary waves
on coastlines (Monaghan and Kos 1999) and the simu-

lation of gravity currents (Monaghan, Cas, Kos & Hall-
worth 1999).

(d) Impact problems

A solid body hitting water is considered to be a very
difficult problem. With SPH it can be handled very
simply. An example is the motion produced by a box
falling vertically into water (Monaghan and Kos 2000).
The agreement with experiment is good. Another ex-
ample is fluid motion produced by a weighted box run-
ning down a curved slope into a tank. Comparison with
experiment again produces good agreement. These re-
sults show that even in complicated fluid dynamical
problems quite different to those in astrophysics SPH
can reproduce the experimental results. Applications
in progress include the dynamics of a dam initiated by
a seismic wave.

(e) Elasticity and Fragmentation

Benz and Asphaug initiated the application of SPH
to problems involving elastic materials and brittle frac-
ture. Standard SPH has a benign instability for elastic
materials. It arises because the elastic pressure can
be negative and the SPH particles clump. However,
this problem can be eliminated (see for example Mon-
aghan 2000). In the work of Benz and Asphaug the
brittle materials fragmented before the tensile instabil-
ity developed. The application considered by Benz and
Asphaug was to the collision of planetesimals. There
are numerous applications in geology. Think of earth-
quakes, and the sudden change in a volcano as the
magma chamber beneath collapses.
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