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Abstract

The log—normal size distribution theories developed recently for aerosol coagulation are reviewed. The

analytical solations to Brownian coagulation developed recently for various particle size regimes are reviewed. In

order to describe the evolution of the size distribution of a coagulating aerosol over the entire size range. the

analytical solutions developed individually for the free—molecule regime, the transition regime. the near-

continuum regime, and the continuum regime have been combined. The work described here represents the first

analytical solution to the aerosol coagulation problem covenng the entire particle size range.
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1. INTRODUCTION

Individual particles suspended in the air collide and
stick together through various mechanisms such as
random Brownian motion of particles. differential
settling velocities, flow turbulence, and by velocity
gradients in laminar flow. Among these mechanisms,
coagulation due to Brownian motion 18 an important
parucle growth mechanism in situations where small
aerosol particles at a high concentration are concerned
or where long-time behavior of suspended particles is
of interest. The time evolution of particle size distribu-
tion for a coagulating aerosol is of fundamental tnterest
in many applications such as atmospheric science.
industrial hygiene, and nuclear safety analysis, because
many properties such as toxicity, 1adioactivity, electro-

static charging, and light scattering of the suspended

particles depend upon their size distribution.

A complete particle size distribution of a polydis-
perse aerosol undergoing coagunlation is governed by
the following integro~differential equation (Miiller,
1928):
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where # (v. ) is the particle size distribution function at
time, 7, and 8 (v, ¥) 15 the collision kernel for two
particles of volume v and 7. Thus the first term of the
right—hand side represents the production rate of
particle size v by collision of particles of size v-¥ and
¥, and the second term gives the disappearance rate of
particles having volume v by collision with particles of

all sizes. The exact solution to Eq. (1) coupled with the

I. KOSAE Vol 15, No E{19%9)



66 Seong Hun Park, Hyun Tae Kun and Kyoo Won Lee

particle size dependent § does not exist to date due to
the complexity invelved in the integro-differential
equation.

The problem of Brownian coagulation retaining the
size—dependent collision kernel was treated compre-
hensively by Friedlander and Wang (1966), Wang and
Friedlander (1967), and Lai er al. (1972). Using the
similarity transform for the particle size distribution
function, a series of solutions were provided for the
self —preserving size distributions that coagulating
aerosols attain after sufficient time elapses. Brownian
coagulation in the continunum (Friedlander and Wang,
1966), the near—continuum (Wang and Friedlander,
1967), and the free-molecule (Lai et al., 1972) regimes
were treated. The solutions are in a form that is much
simpler than the original governing equation although
the results are generally in numerical or tabular form.
The self-preserving size distribution theory played a
very important role for researchers in understanding
the coagulation mechanism. For this reason, the theory
has been of extensive interest for numerous theoretical
and experimental studies. The discovery that the size
distribution of an aerasol undergoing Brownian coagu-
lation in certain cases eventually attains an asymptotic
form of the size distribution js indeed very significant
and useful theoretically and experimentally. One short-
coming of the theory is its inability to resolve the size
distribution for the time period before an aeroseol att-
ains the self-preserving size distribution. Therefore, it
was still necessary to resort to numerical calculations.

Lately, we took another approach to obtain simple
analytical solutions that provide the size distribution
aver the entire time period of coagulation for various
size regimes (Otto ef al., 1999: Park ef al., 1999; Lee et
al., 1997: Lee ef al., 1990; Lee et al., 1984; Lee, 1983).
The approach we have taken is based on the use of a
time—dependent log-normal function for depicting the
size distribution of a coagulating aerosol. Through sui-
table simplifications, the Miilter equation was solved
analytically providing a siraple solution. Due to both
the simplicity in concept and the straightforward ap-

proach taken in the studies, the results have also been
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of interest in recent experimental and theoretical stud-
ies (Otto et al., 1994; Vemury et al., 1994, Rosner,
1989; Pratsinis, 1988; Lee, 1985: Lee and Chen. 1984}).
The purpose of this paper is to review those analytical
solutions and to give a guideline for use of the solu-

tions.

2. ANALYTICAL SOLUTIONS

In order to represent a polydisperse aerosol size
distribution. the log-normal function, cne of the most
commonly used mathematical forms for the study of
dynamics of particles. is used here. The size distribu-
tion density function for particles whose radius is r for

the log—normal-distribution is written as

1 N [— 1n2{rfrg(x)}]
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where r.(f) is the geometric number mean particle
radius, o(f) is the geometric standard deviation based
on particle radius, and N{z) is the total number con-
centration of particles. For studying the coagulation
problem in which twa particles collide to become a
particle whose volume is the sum of the two volumes,
it is convenient to rewrite Eq. (2} in terms of particle

volume:
1N — I {vin)
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where v,(#) [= 4mr/3] 15 the geometric number mean
particle volume. If one obtains the time evolution of
the three parameters N(z), v (t). and a(f), the particle
size distribution of the coagulating aerosol of interest
for any time,  can be constructed using Eq. (3).

In the following sections. the analytical solutions are
introduced tor different number regimes where the
Knudsen nummber, Kr[=A/r], is the ratio of the mean
free path length of the gas molecules. A to the particle

radius, *.

2.1 Continunm Regime (Kn <~ 0.1)
For the case of coagulation due to Brownian motion
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in the continuum regime, the collision §(v,%) is written
as
1 1

Biv, 7)= Koy (0 + 7' (F + 5) )
where K., is the collision coefficient for the con-
tinuum regime [= 2k:7/3], subscript co designates the
cantinuum regime, kg is the Boltzmann constant, T is
the absolute temperature, and @ 15 the gas viscosity.
Using Eq. (4). Lee (1983) derived the following solu-

tions:
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where N, G, and vy, are the initial values for ¥, o, and

1, respectively.

2, 2 Near-continuum Regime (~0.1<Kn < ~1)

For particles whose Knudsen number 1s larger than
0.1, slippage of gas molecules around particles influ-
ences the coagulation rate. The collision kernel for this

regime is;
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where C is the slip correction factor. The following
Cunningham slip correction factor was utilized in Lee
et al, (1997),

C=1+A- Kn (9)

where A = 1.591. Using Eq.(8) coupled with Eq. (9},

Lee et al. (1997) derived the following solutions:
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where p=1+exp{ln’ 0,), s=4 - Kn.{exp{ln’ 6,/2)

-+ exp (5In* 0./2)}, Kn, (= Afry) is the Knudsen num-
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ber based on ry,, and ¢=

2. 3 Free-molecule Regime (Kn > ~50)

In the free—molecule regime, where particle sizes
are much smaller than the mean free paths of gas
molecules. &, the collision kernel has the following
form obtained by the kinetic theory:

1 J. w2

B0 M=K+ 5P {4 (13
where Kj. is the collision coefficient for the free-
molecule regime coagulation [= (3/4m)" (6ksT/00"],
subscript fin designates the free—molecule regime, and
p 18 the particle density. Using Eq. (13}, the following
solutions were derived by Lee ef al. (1990) and Park et
al. (1999):

N {] N SKﬁ,;Hb,,vy,,”w,r)’“ ”
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[2+ {exp{7.5I7 0,) — 211 + 3K, Hb, vl N, 1617
(16}

where H=exp (In® 6,/8} + 2 exp (Sln® a./8) + exp (25
In’ &,/8) and &,=1 + 1.2 exp (— 20,) — 0.646 exp (—
0.35 62).
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2. 4 Transition Regime (- 1< Kn < ~ 50}

In the transition remme the coagulation rate is de-
scribed neither by the continuum theory nor by simple
kinetic theory. Since Fuchs (1934) found a semi-
empirical solution of the coagulation kernel using the
so called flux-matching theory, several similar solu-
tions have been suggested (Praisinis. 1988; Dahneke,
1583; Fuchs and Sutugin. 1971; Wright, 1960). Otto et
al. (1999) compared all those selutions and concluded
that the harmontc mean kernel (Pratsinis, 1988) is
simplest to use while the more complicated Dahneke's
kernel is also much easier than other solutions yielding
only 1% relative error in maximum. Therefore, in this
study the harmonic mean kernel and Dahneke’s kernel
are to be considered.

In the flux-matching approach, the coagulation

kernel for the transition regime is expressed as follows:

BT e ) - B iy
M, = eV, V) > W1
1 + B;_KHD + B3 KT].D'
Knp=tre® ) (17)
2B (v. 7)

where subscript ac designates the near—continuum
regime. For the harmonic mean kernel, B, =0, B, =2,
and B3 =0 and for the Dahneke’s kernel. B1=1. B-=2,
and B;=2.

2. 4. 1 Harmonic Mean Kernel
Using the harmonic mean kernel, Park ef al. (1999)

derived the following solutions:
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where g=A - Kn, exp (1.5{In° 0= — In* )} {exp (In?
a,/2) + exp (3ln” 0,/2)}, d=

Koo (NN 10K Ha ) + U prt (NI 5)
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Ow (=1.320) 15 the asymptotic value of o for the contin-

uum regime as given by Lee (1983), and Gw g, (= 1.355)
1s the asymptotic value of o for the free-molecule re-

gime as given by Lee ef al. (1984).

2. 4. 2 Dahneke’s Kernel
Using Dahneke’s kernel, Otto ef al. (1999) develop-
ed another solution. The solution 15 somewhat similar
to that obtained by Park er af. {1999) m the form, yet 1t
is more complicated. Details on the derivation and the
results can be referred to Otto et al. (1999),

3. DISCUSSION AND CONCLUSIONS

In this review article, a senes of analytical solutions
to time evolution of the particle size distribution of a
coagulating aerosol in different size regimes were
mtroduced. Consequently, a solution to the coagulation
problem covering the entire particle size regime is
presented. It 18 noticed that due to the complex nature
of the coagulation problem, some of the derived solu-
tions, Eq. (10)y and Eq. (18). are m an implicit form. In
this case, one needs o compute the time (£} it takes to
obtain a desired number concentration decay (N/N,)
instead of computing explicitly the number concen-
tration decay for a given time. Thereafier, it 1s possible
to compute the geometric standard deviation (o) and
the geometric mean particle volume (v, for the corre-
sponding coagulation time.

To verify the analytical solutions introduced, we
compared the results in a wide parameter range with
numerical log—normal method {Otto et al.. 1994}, In
addition, we compared the results with a sectional mo-
del (Landgrebe and Pratsims, 1990} which does not
assume a particular size distribution during the coagu-

lation. In Fig |1, the evolution of the size distribution i3
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compared with the numerical results. The initial para- Fig. | shows that the result in this study is in good
meters for the comparison caleulation in this figure agreement with that obtained by the numerical me-
were thods.
. " Fig. 2 shows the change in the geometric standard
N,=10%particlesfem®. r, =47 am, 0,=1.8, L . . ,
. deviation o as a function of tume as the particle size
T=300K, and p=1pgfcm’. . . .
distribution moves from the free-molecule regime to
0.25 - e ———— — sectional
- - - numerical log-normal
0.20 — - analytical, this study
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2
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Fig. 1. Comparison of the change in particle size distributions with numerical resuits.
free-molecule transition near continuum - continuum
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Fig. 2. Change in the geometric standard deviation o as a function of time as the particle size makes a transition from
the free— molecule regime to the continuum regime.

T KOSAE Vol 15, No. E(1999)



70 Seong Hun Park, Hyun Tae Kun and Kyoo Won Lee

the continuum regime. It is seen that in a late stage
within the free-molecule regime, ¢ approaches 1.355,
which is the asymptotic value given previously by Lee
et al. (1990) for the free—molecule regime coagulation,
As coagulation progresses further. particles move into
the transition regime in which o decreases following
the quasi—self-preserving values (Otto er ai., 1994).
As coagulation proceeds further, coagulating particles
are seen to enter the continuum regime. In this regime
o approaches 1.320, which 15 the asymptotic value
given by Lee (1983) for the continuum regime coagu-
lation. Tt is interesting to note that regardless of what
size regime an aerosol originates from, the geometric
standard deviation of all the aerosols quickly joins the
asympiotic ¢ curve shown in the middle in Fig, 2 and
then follows the curve before finally attaining the value
of 1.320.

Nomenclature
A constant (=1.591) [ —]
b, defined in Eqs. (14) through (16) [—]

By, By, B: variables used for the coagulation coeffic-
ient in the transition regime [—]

c defined in Eqs. (11) and (12} [—]

C Cunningham slip correction factor [—]

d defined in Eqs. (19) and (20} [—|

H defined in Egs. (14) through (16) [ ]

K collision coefficient for the continuum
regime [m¥particles/sec]

Kim collision coefficient for the free-molecule
regime [m**/particles/sec]

ka Boltzmann constant [kg m*/sec’/K]

Kn Knudsen number [—]

Knp defined in Eq. (17) | -]

N total number concentration of particles
[particles/m®]

n particle size distribution density function
[particles/m*/m?]

P defined in Eq. (10) [—]

q defined in Eq. (18) [—]

r particle radius [m]

Ty geometric mean particle radius [m]

g/ B 2154 AE S

§ defined in Eq.{10) [—]

t time [sec]

T absolute temperature [K]

v, ¥ particle volume [m®)

\ geometric mean particle volume [m?]
B collision kernel [m*/particles/sec]

geometric standard deviation based on
particle radius [ ]

n gas viscosity [kg/m/sec]
mean free path of gas molecules [m)]
particle density [kg/m’]

Subscripts
o refers to imitial condition
o refers to condition at t— eo
5o, fin refers to asymptotic condition within free
—-molecule regime

co refers to the continuum regime

ne refers to the near—continuum regime

Jfin refers to the free—molecule regime
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