• Title/Summary/Keyword: particle method

Search Result 4,408, Processing Time 0.035 seconds

Physical and Chemical Properties of Chlorine Bypass System-Dust from Cement Manufacturing (시멘트 생산 시 발생하는 Chlorine Bypass System-dust의 물리 및 화학적 특성)

  • Han, Min-Cheol;Lee, Dong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.310-315
    • /
    • 2019
  • This study conducted a series of studies to find alternative ways to use Chlorine Bypass System-dust(CBS-dust) in cement production. The results of engineering characteristics of CBS-dust are summarized as follows. First of all, the density of CBS-dust is 2.40, lighter than cement and the pH was 12.50 which was strong alkaline. In terms of particle size, it was 11.70 ㎛ which was finer than cement. With chemical properties, calcium oxide(CaO) was the highest as 35.10%, potassium oxide(K2O) was 32.43%, potassium chloride(KCl) was 19.46%, sulfur oxide(SO3) was 6.81%, and the remaining chemical components are SiO2, Fe2O3, Al2O3, MgO, and the like. Therefore, if CBS-dust is used as early-strength chemical admixtures in the concrete secondary products that use a large amount of mineral admixtures without rebar, it can be an effective method for increasing the strength of concrete as an alkali activator and preventing early-frost damage of Cold Weather Concrete.

Precipitation-Filtering Method for Reuse of Uranium Electrokinetic Leachate (우라늄 오염 동전기 침출액의 재이용을 위한 침전-여과 방법)

  • Kim, Gye-Nam;Shon, Dong-Bin;Park, Hye-Min;Kim, Ki-Hong;Lee, Ki-Won;Moon, Jeik-kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • A large volume of uranium electrokinetic leachate has been generated during the electrokinetic decontamination to remove uranium from contaminated soil. The treatment technology for the reuse of the uranium leachate was developed. The concentration of uranium in the generated uranium leachate was 180 ppm and concentrations of Mg(II), K(I), Fe(II), and Al(III) ions ranged from 20 ppm to 1,210 ppm. The treatment process for uranium leachate consisted mainly of mixing and cohesion, precipitation, concentration, and filtration. In order to obtain the pH=11 of a precipitate solution, the calcium hydroxide needs to be 3.0g/100ml and the sodium hydroxide needed to be 2.7g/100ml. The results of several precipitation experiments showed that a mixture of NaOH+0.2g alum+0.15g magnetite was an optimal precipitant for filtration. The average particle size of precipitate with NaOH+alum+0.15g magnetite was $600\;{\mu}m$. Because the total value of metal concentrations in supernatant at pH=9 was the smallest, sodium hydroxide should be added with 0.2g alum and 0.15g magnetite for pH=9 of leachate.

Analysis of Response Time and Reflectivity According to Driving Conditions of Barrier Rib-Type E-Paper Fabricated by Charged Particle Filtering Method (격벽형 전자종이의 하전입자 필터링 방법 및 구동조건에 따른 응답시간 및 반사율 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.475-482
    • /
    • 2020
  • For electronic paper displays using electrophoresis, the response time and reflectivity of the image panel fabricated by filtering are analyzed. For the filtering process, a square wave and ramp wave are applied to white charged particles with a unique q/m value. We divide the sample panels into #1 to #4 according to the applied waveform in the filtering process. Step waves comprising two steps are used to drive the panel; therefore, we divide the driving conditions into D1~D4. The applied voltage at the first stage of the half cycle of the driving waveform moves the charged particles attached via the image force from the electrode, and the applied voltage at the second stage moves the floating charged particles by detaching. As mentioned, four types of driving conditions (D1 to D4) classified according to the half cycle of the driving waveform are applied to the samples #1 to #4), which are classified according to four types of filtering process. When driving condition D1 is applied to the four types of sample panels, the rise time of #1 is 1.59s, #2 is 1.706s, #3 is 1.853s, and #4 is 1.235s, resulting in #4 being relatively faster compared with other sample panels, and showing the same trend in other driving conditions. As a result, we confirm that applying the driving condition D1 causes abrupt movement of the white charged particles injected into the cell. When the same driving waveform (D1) is applied to each sample, reflectivities of 32.1% for #1, 31.4% for #2, 27.9% for #3, and 63.4% for #4 are measured. From the experiment, we confirm that the driving condition D1 (1s of 3.5 V, 9s of 3.0 V) and ramp wave #4 in filtering are desirable for good reflectivity and response time. Our research is expected to contribute to the improvement of the filtering process and optimization of the driving waveform.

Study on Methods for Determining Half-Life of Domestic Wooden Panel among Harvested Wood Products (국산 목질판상재의 반감기 결정방법에 관한 연구)

  • Chang, Yoon-Seong;Han, Yeonjung;Park, Jun-Ho;Son, Whi-Lim;Park, Joo-Saeng;Park, Moon-Jae;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.309-317
    • /
    • 2014
  • Harvested wood products (HWP) are known as products from the tree such as sawn wood, plywood, particle board, structural lumber, wooden interior material, wooden furniture, and paper products. Because carbon is locked up in the HWP until eventual end-use of HWP, HWP played a role as the carbon storage which has the effect of stabilizing the concentration of carbon dioxide in the atmosphere. For these reasons, the suggestion that it must admit the carbon storage effect of HWP has been constantly raised. In 2011, the 17th session of the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) which was held in Durban, South Africa, assigned "Production Approach" which targets only the HWP producted by using round wood of domestic forestry as a official method for carbon accounting. Therefore, it is necessary that each country has to determine the half-life of wood in order to correspond to the discussions and negotiations between countries in the future and to develop an inventory of product-specific domestic wood. In this study, some countries' examples of the methods and conditions for determining half-life of HWP were investigated, and it was tried to derive the factor and methodology to determine half-life span of domestic HWP appropriately.

Visualization of Flow in a Transonic Centrifugal Compressor

  • Hayami Hiroshi
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-6
    • /
    • 2002
  • How is the flow in a rotating impeller. About 35 years have passed since one experimentalist rotating with the impeller. of a huge centrifugal blower made the flow measurements using a hot-wire anemometer (Fowler 1968). Optical measurement methods have great advantages over the intrusive methods especially for the flow measurement in a rotating impeller. One is the optical flow visualization (FV) technique (Senoo, et al., 1968) and the other is the application of laser velocimetry (LV) (Hah and Krain, 1990). Particle image velocimetries (PIVs) combine major features of both FV and LV, and are very attractive due to the feasibility of simultaneous and multi-points measurements (Hayami and Aramaki, 1999). A high-pressure-ratio transonic centrifugal compressor with a low-solidity cascade diffuser was tested in a closed loop with HFC134a gas at 18,000rpm (Hayami, 2000). Two kinds of measurement techniques by image processing were applied to visualize a flow in the compressor. One is a velocity field measurement at the inducer of the impeller using a PIV and the other is a pressure field measurement on the side wall of the cascade diffuser using a pressure sensitive paint (PSP) measurement technique. The PIV was successfully applied for visualization of an unsteady behavior of a shock wave based on the instantaneous velocity field measurement (Hayami, et al., 2002b) as well as a phase-averaged velocity vector field with a shock wave over one blade pitch (Hayami, et al., 2002a. b). A violent change in pressure was successfully visualized using a PSP measurement during a surge condition even though there are still some problems to be overcome (Hayami, et al., 2002c). Both PIV and PSP results are discussed in comparison with those of laser-2-focus (L2F) velocimetry and those of semiconductor pressure sensors. Experimental fluid dynamics (EFDs) are still growing up more and more both in hardware and in software. On the other hand, computational fluid dynamics (CFDs) are very attractive to understand the details of flow. A secondary flow on the side wall of the cascade diffuser was visualized based either steady or unsteady CFD calculations (Bonaiuti, et al.,2002). EFD and CFD methods will be combined to a hybrid method being complementary to each other. Measurement techniques by image processing as well as CFD calculations give a huge amount of data. Then, data mining technique will become more important to understand the flow mechanism both for EFD and CFD.

  • PDF

Simultaneous Analysis Method for Polar and Non-polar Ginsenosides in Cultivated Wild Ginseng by Reversed-phase HPLC-CAD (HPLC-CAD에 의한 산양삼의 극성 및 비극성 ginsenoside 동시 분석)

  • Ok, Seon;Kang, Jae Seon;Kim, Kang Min
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.247-252
    • /
    • 2016
  • Cultivated wild ginseng is a widely used dietary supplement and medicinal herb. The aim of this study was to optimize the ginseng using high performance liquid chromatography (HPLC)- charged aerosol detection (CAD) for ginsenoside analysis. CAD measures the physical property of an analyte and responds to almost all non-volatile species, independent of their nature, spectral properties, or particle size. It has become widely employed in pharmaceutical analysis. The cultivated wild ginseng extracts were analyzed for compositions of ginsenosides Rb1, Rd, Rg1, Rf, Re, and Rh1. The optimal analysis condition was set up from an experiment using a gradient. Ten grams of cultivated wild ginseng were extracted with 95% EtOH 100 ml for 24 hr at 80℃. The contents of the 6six major ginsenosides in the cultivated wild ginseng extract were Rb1 (5.48±0.12 mg/g), Rd (5.33±0.14 mg/g), Rg1 (12.80± 0.05 mg/g), Rf (19.08±0.68 mg/g), Re (19.87±0.05 mg/g), and Rh1 (16.47±0.16 mg/g), respectively. HPLC showed that the protopanaxatriol group (Rg1, Rf, Re, Rh1) had more content than the protopanaxadiol group (Rb1, Rd) in cultivated wild ginseng extract. In summary, the ginsenosides were identified with HPLC-CAD analysis, and their presence and quantity imply the importance of quality control, as well as the pharmacological activity of the ginseng root.

Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2) (반 쐐기형 연소실을 채택한 SI 기관에서 포트형상이 정상유동 특성에 미치는 영향 (2) - 유속분포 (2))

  • Yoon, Inkyoung;Ohm, Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2017
  • This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle - image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.

Formulation and Application of UV-Cured Hard Coating Compounds for PVC Tile (PVC 바닥상재용 광경화형 하드 코팅액의 제조 및 응용에 관한 연구)

  • Park, Bo-Ram;Yoon, Hyun-Jung;Zhao, Hong;Ha, Jin-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.9
    • /
    • pp.2396-2401
    • /
    • 2009
  • This study is on development of UV-cured hard coating compounds which have more improved abrasion resistance than existing UV-cured urethane-acrylic resin, to prevent a surface of a widely used PVC tile as a constructive material from being scratched. To make a high abrasion resistant hard coating solution compared to UV-cured urethane-acrylic resin which has no abrasion resistance and been used for PVC tiles, we added powder substances of different abrasion resistant level, $Al_2O_3$(Al-160SG-3), $Al(OH)_3$(SH-8W), $SiO_2$(KS-5000), etc., to the resin, changing their contents from 10% to 30% against quantities of resin, and compounded it using Ring-Mill. After coating PVC tiles with the hard coating solution using bar-coating method that can adjust a thickness, we estimated some surface properties-abrasion resistance, pencil hardness, adhesive power, thickness of coating, and so on. As a result, a hard coating solution added 30% $Al_2O_3$ powder to the resin had the finest surface properties-the first grade in abrasion resistance, H in pencil hardness, 100% in adhesive power, and a hard coating solution which showed excellent solidity and abrasion resistance has smaller particle size, higher powder content, and thicker coating thickness.

Precipitation Characteristics of Ammonium Metavanadate from Sodium Vanadate Solution by Addition of Ammonium Chloride (소듐바나데이트 수용액에서 염화암모늄 첨가에 의한 암모늄메타바나데이트 침전특성 고찰)

  • Yoon, Ho-Sung;Heo, Seo-Jin;Kim, Chul-Joo;Chung, Kyeong Woo;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.28-37
    • /
    • 2020
  • In this study, the effect of precipitation temperature, ammonium chloride amount and addition method, vanadium and sodium hydroxide content of the solution on the precipitation of ammonium metavanadate were examined by using the sodium vanadate(NaVO3) solution in alkali region as a starting material. As the pH of solution decreased, the addition amount of ammonium chloride and the vanadium content of the solution increased, the precipitation rate of ammonium metavanadate increased. In this research condition, the basic conditions for obtaining more than 90% of precipitation yield were 10,000mg/L of vanadium content, 2equivalents of ammonium chloride addition, room temperature, and 2 hours of precipitation time. The size of precipitated particles decreased with increasing precipitation rate. Especially when liquid ammonium chloride was injected into the solution, the precipitation rate was the slowest and the particle size of the precipitate was the largest. After the primary precipitation by adding ammonium chloride as a solid, the secondary precipitation was carried out by adding new reactants. At this time, the precipitation with added ammonium chloride solid was not affected by the precipitates present in the solution. However, when liquid ammonium chloride was added, new precipitate was deposited on the surface of the precipitate present in the solution, increasing its size. Due to the difference in ammonium metavanadate solubility to temperature, the precipitation temperature at the vanadium content of 10,000mg/L in the solution affected the precipitation rate of ammonium metavanadate and the precipitation temperature did not affect the precipitation rate at a high concentration of more than 30,000mg/L vanadium content in the solution.

Current Research Trends for Treatment of Microplastics (미세플라스틱 처리를 위한 연구동향)

  • Kim, Seong-Min;Baek, Sang-Ho;Han, Yosep;Davaadorj, Tsogchuluun;Go, Byung-Hun;Jeon, Ho-Seok
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.15-27
    • /
    • 2020
  • Microplastics are recognized as critical and serious environmental problem in worldwide. Plastics are inexpensive, lightweight, excellent in processability, and various in material-specific properties. Along industrial development, the production and disposal amount of plastics are also rapidly increasing. In particular, abundant plastic wastes are eventually disposed into marine environment with harmful impacts on the ecosystem. Therefore, lots of relevant studies were recently progressed in various fields. However, many studies are being just conducted due to its difficulty in applying a general treatment method for those small particle sizes and their various characteristics. In the meantime, lots of researches are being conducted on applying methods using physical properties such as specific gravity, magnetic, and electrostatic separation, which are beneficiation processes of minerals. However, since it is still in the laboratory stage, the development of larger scale separation technology for efficient treatment is urgent.