DOI QR코드

DOI QR Code

Precipitation Characteristics of Ammonium Metavanadate from Sodium Vanadate Solution by Addition of Ammonium Chloride

소듐바나데이트 수용액에서 염화암모늄 첨가에 의한 암모늄메타바나데이트 침전특성 고찰

  • 윤호성 (한국지질자원연구원 광물자원연구본부) ;
  • 허서진 (광운대학교 화학공학과) ;
  • 김철주 (한국지질자원연구원 광물자원연구본부) ;
  • 정경우 (한국지질자원연구원 광물자원연구본부) ;
  • 전호석 (한국지질자원연구원 광물자원연구본부)
  • Received : 2020.08.13
  • Accepted : 2020.10.06
  • Published : 2020.10.30

Abstract

In this study, the effect of precipitation temperature, ammonium chloride amount and addition method, vanadium and sodium hydroxide content of the solution on the precipitation of ammonium metavanadate were examined by using the sodium vanadate(NaVO3) solution in alkali region as a starting material. As the pH of solution decreased, the addition amount of ammonium chloride and the vanadium content of the solution increased, the precipitation rate of ammonium metavanadate increased. In this research condition, the basic conditions for obtaining more than 90% of precipitation yield were 10,000mg/L of vanadium content, 2equivalents of ammonium chloride addition, room temperature, and 2 hours of precipitation time. The size of precipitated particles decreased with increasing precipitation rate. Especially when liquid ammonium chloride was injected into the solution, the precipitation rate was the slowest and the particle size of the precipitate was the largest. After the primary precipitation by adding ammonium chloride as a solid, the secondary precipitation was carried out by adding new reactants. At this time, the precipitation with added ammonium chloride solid was not affected by the precipitates present in the solution. However, when liquid ammonium chloride was added, new precipitate was deposited on the surface of the precipitate present in the solution, increasing its size. Due to the difference in ammonium metavanadate solubility to temperature, the precipitation temperature at the vanadium content of 10,000mg/L in the solution affected the precipitation rate of ammonium metavanadate and the precipitation temperature did not affect the precipitation rate at a high concentration of more than 30,000mg/L vanadium content in the solution.

본 연구에서는 알칼리 영역의 소듐바나데이트(NaVO3) 수용액을 출발물질로 사용하여 침전온도, 염화암모늄 첨가량 및 첨가방법, 수용액의 바나듐 및 수산화나트륨 함량 등이 암모늄메타바나데이트 침전거동에 미치는 영향을 알아보았다. 수용액 pH가 감소할수록, 염화암모늄 첨가량 그리고 수용액의 바나듐 함량이 증가할수록 암모늄메타바나데이트 침전률이 증가하였다. 본 연구조건에서 90% 이상의 암모늄메타바나데이트 침전률을 얻기 위한 기본 조건은 수용액 바나듐 함량 10,000mg/L, 고체 염화암모늄 첨가량 2당량, 침전온도 상온, 침전시간 2시간 이었다. 암모늄메타바나데이트는 침전속도 증가에 따라 침전물 크기가 감소하였으며, 특히 염화암모늄을 액체로 투입할 때, 침전속도는 가장 느리며 침전물 크기는 가장 크게 나타났다. 염화암모늄을 고체로 첨가하여 1차 침전반응 후, 새로운 반응물을 첨가하여 2차 침전반응을 시킬 때, 고체 염화암모늄을 첨가한 침전반응은 수용액에 존재하는 침전물에 영향을 받지 않았다. 그러나 염화암모늄 수용액을 첨가하였을 때는 수용액에 존재하는 침전물 표면에 침적되어 그 크기를 증가시켰다. 수용액 온도에 따른 암모늄메타바나데이트 용해도 차이에 의하여, 바나듐 함량 10,000mg/L 수용액에서는 침전온도가 암모늄메타바나데이트 침전에 영향을 미치며, 바나듐 함량 30,000mg/L 이상의 고농도 수용액에서는 침전온도가 침전반응에 영향을 미치지는 못하였다.

Keywords

References

  1. Burwell, B., 1961 : Extractive metallurgy of vanadium, J. of Metals, 13(8), pp.562-566.
  2. Shlewit, H., Alibrahim, M., 2006 : Extraction of sulfur and vanadium from petroleum coke by means of salt-roasting treatment, J. Fuel, 85(5-6), pp.878-880. https://doi.org/10.1016/j.fuel.2005.08.036
  3. Moskalyk, R. R., Alfantazi, A. M., 2003 : Processing of vanadium: A review, J. Minerals Engineering, 16(9), pp. 793-805. https://doi.org/10.1016/S0892-6875(03)00213-9
  4. Agarwal, D. C., Nigam, P. C., 1978 : Kinetics of Vapor Phase Oxidation of Methyl Alcohol over Supported V2O5-K2SO4 Catalyst, 55, pp.1-9. https://doi.org/10.1016/0021-9517(78)90180-X
  5. Mandhane, G., Joshi, R. S., Ghawalkar, A. R., et al., 2009 : Ammonium Metavanadate: A mild and Efficient Catalyst for the Synthesis of Coumarins, Bull. Korean Chem. Soc., 30, pp.2969-2972. https://doi.org/10.5012/bkcs.2009.30.12.2969
  6. Arya, A., Tripathy, P. K., Bose, D. K., 1994 : Thermal decomposition of ammonium metavanadate in a fluidized bed reactor, Thermochim. Acta, 244, pp.257-265. https://doi.org/10.1016/0040-6031(94)80225-4
  7. Navarro, R., Guzman, J., Saucedo, I., et al., 2007 : Vanadium recovery from oil fly ash by leaching, precipitation and solvent extraction process, Waste Manag., 27, pp.425-438. https://doi.org/10.1016/j.wasman.2006.02.002
  8. He, D., Feng, Q., Zhang, G., et al., 2007 : An environmentally-friendly technology of vanadium extraction from stone coal, Miner. Eng., 20, pp.1184-1186. https://doi.org/10.1016/j.mineng.2007.04.017
  9. Yoon, H. S., Chae, S. J., Kim, C. J., et al., 2019 : Precipitation Behavior of Ammonium vanadate from Solution Containing Vanadium, J. of Korean Inst. of Resources Recycling, 28(5), pp.42-50
  10. Du, G., Sun, Z., Xian, Y., et al., 2016 : The nucleation kinetics of ammonium metavanadate precipitated by ammonium chloride, J. of Crystal Growth, 441, pp.117-123. https://doi.org/10.1016/j.jcrysgro.2016.02.016
  11. Ma, L., Zhang, Y., Liu, T., et al., 2009 : Enhancing effect of precipitating vanadium in ammonium salt, Chinese Journal of Rare Metals, 33(6), pp.936-939. https://doi.org/10.3969/j.issn.0258-7076.2009.06.033
  12. Dean, J. A., 1985 : Lange's Handbook of Chemistry, 13th Edition, Mcgraw-Hill, NewYork, pp.10-7-10-21.
  13. Mullin J. W., 1971 : Crystallisation, The Chemical Rubber Co., pp.180-181.
  14. Mullin J. W., 1971 : Crystallisation, The Chemical Rubber Co., pp.221-222.