• 제목/요약/키워드: partially linear

검색결과 229건 처리시간 0.027초

THE EXTENSION OF SOLUTIONS FOR THE CAUCHY PROBLEM IN THE COMPLEX DOMAIN

  • Lee, Eun-Gu;Kim, Dohan
    • 대한수학회보
    • /
    • 제26권2호
    • /
    • pp.185-190
    • /
    • 1989
  • In [4], J. Leray introduced the notion of partial hyperbolicity to characterize the operators for which the non-characteristic Cauchy problem is solvable in the Geverey class for any data which are holomorphic in a part of variables x"=(x$_{2}$,..,x$_{l}$ ) in the initial hyperplane x$_{1}$=0. A linear partial differential operator is called partially hyperbolic modulo the linear subvarieties S:x"=constant if the equation P$_{m}$(x, .zeta.$_{1}$, .xi.')=0 for .zeta.$_{1}$ has only real roots when .xi.'is real and .xi."=0, where P$_{m}$ is the principal symbol of pp. Limiting to the case of operators with constant coefficients, A. Kaneko proposed a new sharper condition when S is a hyperplane [3]. In this paper, we generalize this condition to the case of general linear subvariety S and show that it is sufficient for the solvability of Cauchy problem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.blem for the hyperfunction Cauchy data which contains variables parallel to S as holomorphic parameters.

  • PDF

Effect of chain structure of polypropylenes on the melt flow behavior

  • Lee, Young-Jun;Sohn, Ho-Sang;Park, Seung-Ho
    • Korea-Australia Rheology Journal
    • /
    • 제12권3_4호
    • /
    • pp.181-186
    • /
    • 2000
  • Rheological Properties of polypropylenes having different molecular structures (linear polypropylene (PPL) and branched one (PPB)) were studied. Both the extensional flow and oscillatory shear flow properties were checked. Especially, the melt strength of polypropylenes having various shear history were investigated by using in-house-made Rheometer (called SMER). Compared to linear polypropylene, the branched polypropylene shows enhanced melt strength during extensional flow due to the retarded relaxation of molecules. When the slope of melt tension was plotted against take up speed of melt strand, the characteristic peak was observed in case of branched polypropylene, while the linear polypropylene shows only monotonously decreasing pattern. This entanglement was partially disrupted by physical forces such as shear during melt extrusion. However, the melt strength of PPB after multiple extrusion is still higher than PPL, implying the loss of elasticity during multiple extrusion is not so comprehensive. On dynamic experiments, PPB shows typical shear thinning behavior and the tangent delta of PPB is lower than PPL, reflecting high elasticity of PPB.

  • PDF

형상기억합금을 이용한 3 차원 비선형 트러스 지능작동기 해석 (Analysis of 3-D non-linear truss smart actuator using SMA)

  • 양성필;김상헌;리녕학;류정현;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.557-561
    • /
    • 2008
  • Shape memory alloys (SMA) have interesting features which are the superelastic effect (SE), shape memory effect (SME), two-way SME (TWSME), and so on. These are utilized in actuation factor. The thermo-mechanical constitutive equations of SMA proposed by Lagoudas et al. were employed in the present study for simulating SMA truss structures. The constitutive equation includes the necessary internal variables to account for the material transformations and is utilized in the non-linear finite element procedure of three dimensional truss structures that composed SMA bar (wholly or partially). In this study, we observed which element should be actuated to get a desired shape (actuation shape) from computational analysis. To reach this goal, we apply SMA constitutive equation to non-linear finite element formulation. And then, we simulate two-way shape memory effect as well as superelastic effect of various three dimensional truss using SMA.

  • PDF

Photon Counting Linear Discriminant Analysis with Integral Imaging for Occluded Target Recognition

  • Yeom, Seok-Won;Javidi, Bahram
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.88-92
    • /
    • 2008
  • This paper discusses a photon-counting linear discriminant analysis (LDA) with computational integral imaging (II). The computational II method reconstructs three-dimensional (3D) objects on the reconstruction planes located at arbitrary depth-levels. A maximum likelihood estimation (MLE) can be used to estimate the Poisson parameters of photon counts in the reconstruction space. The photon-counting LDA combined with the computational II method is developed in order to classify partially occluded objects with photon-limited images. Unknown targets are classified with the estimated Poisson parameters while reconstructed irradiance images are trained. It is shown that a low number of photons are sufficient to classify occluded objects with the proposed method.

MEROMORPHIC FUNCTION PARTIALLY SHARES SMALL FUNCTIONS OR VALUES WITH ITS LINEAR c-SHIFT OPERATOR

  • Banerjee, Abhijit;Maity, Sayantan
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1175-1192
    • /
    • 2021
  • In this paper, we have studied on the uniqueness problems of meromorphic functions with its linear c-shift operator in the light of partial sharing. Our two results improve and generalize two very recent results of Noulorvang-Pham [Bull. Korean Math. Soc. 57 (2020), no. 5, 1083-1094] in some sense. In addition, our other results have improved and generalized a series of results due to Lü-Lü [Comput. Methods Funct. Theo. 17 (2017), no. 3, 395-403], Zhen [J. Contemp. Math. Anal. 54 (2019), no. 5, 296-301] and Banerjee-Bhattacharyya [Adv. Differ. Equ. 509 (2019), 1-23]. We have exhibited a number of examples to show that some conditions used in our results are essential.

선형구조해석을 통한 노후된 학교시설 내진성능평가 (Seismic Performance Evaluation of An Old School Building Through Linear Analysis)

  • 이도형;김태완;김승래;추유림;김현식
    • 산업기술연구
    • /
    • 제38권1호
    • /
    • pp.21-27
    • /
    • 2018
  • In January 2018, the Ministry of Education published "Seismic design criteria for school buildings" and "Manual for seismic performance evaluation and retrofit of school buildings" to evaluate seismic performances through linear analysis. This paper evaluates the seismic performance of an old school building through the linear analysis. The target building was constructed in the late 1970s, and the seismic-force-resisting system was assumed to be a reinforced concrete moment frame with an un-reinforced masonry wall. As a result of the evaluation, the target building does not satisfy the 'life safety' level of 1.2 times the design spectrum. The average strength ratio of moment frames, an indicator of the level of seismic performance tends to be controlled by beams. However, through the Pohang earthquake, it was known that the short column effect caused by the partially infilled masonry wall caused shear failure of the columns in school buildings. Therefore, it is necessary to improve the linear analysis so that the column controls the average strength ratio of moment frames.

열, 기계 하중을 고려한 지그재그 고차 복합재 쉘 이론 (Higher Order Zig-Zag Theory for Composite Shell under Thermo-mechanical load)

  • 오진호;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.217-224
    • /
    • 2005
  • A higher order zig-zag shell theory is developed to refine the predictions of the mechanical and thermal behaviors partially coupled. The in-plane displacement fields are constructed by superimposing linear zig-zag field to the smooth globally cubic varying field through the thickness. Smooth parabolic distribution through the thickness is assumed in the out-of-plane displacement in order to consider transverse normal deformation and stress. The layer-dependent degrees of freedom of displacement fields are expressed in terms of reference primary degrees of freedom by applying interface continuity conditions as well as bounding surface conditions of transverse shear stresses. Thus the proposed theory has only seven primary unknowns and they do not depend upon the number of layers. In the description of geometry and deformation of shell surface, all rigorous exact expressions are used. Through the numerical examples of partially coupled analysis, the accuracy and efficiency of the present theory are demonstrated. The present theory is suitable in the predictions of deformation and stresses of thick composite shell under mechanical and thermal loads combined.

  • PDF

Design of LQR controller for active suspension system of Partially Filled Tank Cars

  • Feizi, Mohammad Mahdi;Rezvani, Mohammad Ali
    • Structural Engineering and Mechanics
    • /
    • 제49권3호
    • /
    • pp.329-353
    • /
    • 2014
  • Increasing usage of tank cars and their intrinsic instability due to sloshing of contents have caused growing maintenance costs as well as more frequent hazards and defects like derailment and fatigue of bogies and axels. Therefore, varieties of passive solutions have been represented to improve dynamical parameters. In this task, assuming 22 degrees of freedom, dynamic analysis of partially filled tank car traveling on a curved track is investigated. In order to consider stochastic geometry of track; irregularities have been derived randomly by Mont Carlo method. More over the fluid tank model with 1 degree of freedom is also presented by equivalent mechanical approach in terms of pendulum. An active suspension system for described car is designed by using linear quadratic optimal control theory to decrease destructive effects of fluid sloshing. Eventually, the performance of the active suspension system has been compared with that of the passive one and a study is carried out on how active suspension may affect the dynamical parameters such as displacements and Nadal's derailment index.

An investigation into structural behaviour of modular steel scaffolds

  • Yu, W.K.
    • Steel and Composite Structures
    • /
    • 제4권3호
    • /
    • pp.211-226
    • /
    • 2004
  • This paper presents a study on the structural behaviour of modular steel scaffolds through both experimental and numerical investigations. Three one-storey and three two-storey modular steel scaffolds were built and tested to failure in order to examine the structural behaviour of typical modular steel scaffolds. Details of the tests and their test results were presented in this paper. Moreover, an advanced non-linear analysis method was employed to evaluate the load carrying capacities of these scaffolds under different support conditions. Comparisons between the experimental and the numerical results on the structural behaviour of these modular steel scaffolds were also presented. Moreover, the restraining effects of external supports in practical situations were also studied through finite element methods. The predicted load carrying capacities and deformations at failure of these models under partially restrained conditions were found to be close to the experimental results. A codified design method for column buckling with modified slenderness ratios was adopted for practical design of modular steel scaffolds.

EXISTENCE OF COINCIDENCE POINT UNDER GENERALIZED NONLINEAR CONTRACTION WITH APPLICATIONS

  • Deshpande, Bhavana;Handa, Amrish;Thoker, Shamim Ahmad
    • East Asian mathematical journal
    • /
    • 제32권3호
    • /
    • pp.333-354
    • /
    • 2016
  • We present coincidence point theorem for g-non-decreasing mappings satisfying generalized nonlinear contraction on partially ordered metric spaces. We show how multidimensional results can be seen as simple consequences of our unidimensional coincidence point theorem. We also obtain the coupled coincidence point theorem for generalized compatible pair of mappings $F,G:X^2{\rightarrow}X$ by using obtained coincidence point results. Furthermore, an example and an application to integral equation are also given to show the usability of obtained results. Our results generalize, modify, improve and sharpen several well-known results.