• Title/Summary/Keyword: partial shear connection

Search Result 33, Processing Time 0.019 seconds

Investigation of performance of steel plate shear walls with partial plate-column connection (SPSW-PC)

  • Azandariani, Mojtaba Gorji;Gholhaki, Majid;Kafi, Mohammad Ali;Zirakian, Tadeh;Khan, Afrasyab;Abdolmaleki, Hamid;Shojaeifar, Hamid
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.109-123
    • /
    • 2021
  • This research endeavor intends to use the implicit finite element method to investigate the structural response of steel shear walls with partial plate-column connection. To this end, comprehensive verification studies are initially performed by comparing the numerical predictions with several reported experimental results in order to demonstrate the reliability and accuracy of the implicit analysis method. Comparison is made between the hysteresis curves, failure modes, and base shear capacities predicted numerically using ABAQUS software and obtained/observed experimentally. Following the validation of the finite element analysis approach, the effects of partial plate-column connection on the strength and stiffness performances of steel shear wall systems with different web-plate slenderness and aspect ratios under monotonic loading are investigated through a parametric study. While removal of the connection between the web-plate and columns can be beneficial by decreasing the overall system demand on the vertical boundary members, based on the results and findings of this study such detachment can lower the stiffness and strength capacities of steel shear walls by about 25%, on average.

Evaluation of Structural Behavior of Large Studs Using Partial Composite Beams (부분합성보를 이용한 대직경 스터드의 구조거동 평가)

  • Shim, Chang Su;Lee, Pil Goo;Ha, Tae Yul
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.425-432
    • /
    • 2004
  • Large studs were suggested not only for the design of steel-concrete composite bridges with simplified sections but also for the shear connection in precast decks requiring uniform distribution of shear pockets. Based on the push-out test results on studs with diameters of more than 25 mm, partial composite beams with 40%-degree shear connection were fabricated, and static tests were performed. The ultimate strength and horizontal shear load redistribution of partial composite beams, which have parameters of stud shank diameters and distribution, were evaluated, and group failure in the shear span was observed. Since the flexural strength of composite beams are dependent on the strength of their shear connection, the strength of the stud connection was estimated and it showed considerably higher shear strength. From the load-slip curves, the sufficient ductility and load redistribution of large studs were confirmed. Uniformly distributed large studs can provide proper ultimate behavior of composite beams.

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Ranzi, Gianluca
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.237-255
    • /
    • 2006
  • This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

Dynamic characteristics analysis of partial-interaction composite continuous beams

  • Fang, Genshen;Wang, Jingquan;Li, Shuai;Zhang, Shubin
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.195-216
    • /
    • 2016
  • The dynamic characteristics of continuous steel-concrete composite beams considering the effect of interlayer slip were investigated based on Euler Bernoulli's beam theory. A simplified calculation model was presented, in which the Mode Stiffness Matrix (MSM) was developed. The natural frequencies and modes of partial-interaction composite continuous beams can be calculated accurately and easily by the use of MSM. Proceeding from the present method, the natural frequencies of two-span steel-concrete composite continuous beams with different span-ratios (0.53, 0.73, 0.85, 1) and different shear connection stiffnesses on the interface are calculated. The influence pattern of interfacial stiffness on bending vibration frequency was found. With the decrease of shear connection stiffness on the interface, the flexural vibration frequencies decrease obviously. And the influence on low order modes is more obvious while the reduction degree of high order is more sizeable. The real natural frequencies of partial-interaction continuous beams commonly used could have a 20% to 40% reduction compared with the fully-interaction ones. Furthermore, the reduction-ratios of natural frequencies for different span-ratios two-span composite beams with uniform shear connection stiffnesses are totally the same. The span-ratio mainly impacts on the mode shape. Four kinds of shear connection stiffnesses of steel-concrete composite continuous beams are calculated and compared with the experimental data and the FEM results. The calculated results using the proposed method agree well with the experimental and FEM ones on the low order modes which mainly determine the vibration properties.

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

A general method of analysis of composite beams with partial interaction

  • Ranzi, G.;Bradford, M.A.;Uy, B.
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.169-184
    • /
    • 2003
  • This paper presents a generic modelling of composite steel-concrete beams with elastic shear connection. It builds on the well-known seminal technique of Newmark, Siess and Viest, in order to formulate the partial interaction formulation for solution under a variety of end conditions, and lends itself well for modification to enable direct quantification of effects such as shrinkage, creep, and limited shear connection slip capacity. This application is possible because the governing differential equations are set up and solved in a fashion whereby inclusion of the kinematic and static end conditions merely requires a statement of the appropriate constants of integration that are generated in the solution of the linear differential equations. The method is applied in the paper for the solution of the well-studied behaviour of simply supported beams with partial interaction, as well as to provide solutions for a beam encastr$\acute{e}$ at its ends, and for a propped cantilever.

Partial interaction analysis of multi-component members within the GBT

  • Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.625-638
    • /
    • 2017
  • This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

Use of UHPC slab for continuous composite steel-concrete girders

  • Sharif, Alfarabi M.;Assi, Nizar A.;Al-Osta, Mohammed A.
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.321-332
    • /
    • 2020
  • The loss of composite action at the hogging moment zone for a continuous composite girder reduces the girder stiffness and strength. This paper presents an experimental investigation of the use of an ultra-high performance concrete (UHPC) slab at the hogging moment zone and a normal concrete (NC) slab at the sagging moment zone. The testing was conducted to verify the level of loading at which composite action is maintained at the hogging moment zone. Four two-span continuous composite girders were tested. The thickness of the UHPC varied between a half and a full depth of slab. The degree of shear connection at the hogging moment zone varied between full and partial. The experimental results confirmed the effectiveness of the UHPC slab to enhance the girder stiffness and maintain the composite action at the hogging moment zone at a load level much higher than the upper service load limit. To a lesser degree enhanced performance was also noted for the smaller thickness of the UHPC slab and partial shear connection at the hogging moment zone. Plastic analysis was conducted to evaluate the ultimate capacity of the girder which yielded a conservative estimation. Finite element (FE) modeling evaluated the girder performance numerically and yielded satisfactory results. The results indicated that composite action at the hogging moment zone is maintained for the degree of shear connection taken as 50% of the full composite action and use of UHPC as half depth of slab thickness.

Improvement of the behaviour of composite slabs: A new type of end anchorage

  • Fonseca, Alexandre;Marques, Bruno;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1381-1402
    • /
    • 2015
  • The application of composite steel-concrete slabs with profiled steel sheeting has increased, due to the various advantages in relation to reinforced concrete slabs such as, the reduced thickness, the reduced amount of lost formwork needed, as well as the speed of execution. The loss of longitudinal shear resistance is, generally, the governing design mode for simply supported spans of common lengths. For common distributed loadings, the composite behaviour is influenced by the partial shear connection between the concrete and the steel sheeting. The present research work is intended to contribute to improving the ultimate limit state behaviour of composite slabs using end anchorage. Eurocode 4, Part 1.1 (EN 1994-1-1) provides an analytical methodology for predicting the increase of longitudinal resistance, achieved by using shear studs welded through the steel sheeting as the end anchorage mechanism. The code does not supply an analytical methodology for other kinds of end anchorage so, additional tests or studies are needed to prove the effectiveness of these types of anchorage. The influence of end anchorage mechanisms provided by transverse rebars at the ends of simply supported composite slabs is analysed in this paper. Two experimental programmes were carried out, the first to determine the resistance provided by the new end anchorage mechanism and the second to analyse its influence on the behaviour of simply supported composite slabs.