DOI QR코드

DOI QR Code

Short- and long-term analyses of composite beams with partial interaction stiffened by a longitudinal plate

  • Received : 2005.04.19
  • Accepted : 2005.12.28
  • Published : 2006.06.25

Abstract

This paper presents a novel analytical formulation for the analysis of composite beams with partial shear interaction stiffened by a bolted longitudinal plate accounting for time effects, such as creep and shrinkage. The model is derived by means of the principle of virtual work using a displacement-based formulation. The particularity of this approach is that the partial interaction behaviour is assumed to exist between the top slab and the joist as well as between the joist and the bolted longitudinal stiffening plate, therefore leading to a three-layered structural representation. For this purpose, a novel finite element is derived and presented. Its accuracy is validated based on short-and long-term analyses for the particular cases of full shear interaction and partial shear interaction of two layers for which solutions in closed form are available in the literature. A parametric study is carried out considering different stiffening arrangements to investigate the influence on the short-and long-term behaviour of the composite beam of the shear connection stiffness between the concrete slab and the steel joist, the stiffness of the plate-to-beam connection, the properties of the longitudinal plate and the concrete properties. The values of the deflection obtained from the finite element simulations are compared against those calculated using the effective flexural rigidity in accordance with EC5 guidelines for the behaviour of elastic multi-layered beams with flexible connection and it is shown how the latter well predicts the structural response. The proposed numerical examples highlight the ease of use of the proposed approach in determining the effectiveness of different retrofitting solutions at service conditions.

Keywords

References

  1. Amadio, C. and Fragiacomo, M. (2005), 'Effective width evaluation of steel-concrete composite beams', J. Const. Steel Res., 58, 373-388
  2. Ayoub, A. (2001), 'A two-field mixed variational principle for partially connected composite beams', Finite Elements in Analysis and Design, 37, 929-959 https://doi.org/10.1016/S0168-874X(01)00076-2
  3. Ayoub, A. and Filippou, E C. (2000), 'Mixed formulation of nonlinear steel-concrete composite beam element', J. Struct. Eng., ASCE, 126(3), 371-381 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(371)
  4. Bazant, Z. P. (1972), 'Prediction of concrete creep effects using age-adjusted effective modulus method', ACI J., 69(4),212-217
  5. Baz ant, Z. P. and Oh, B. H. (1984), 'Deformation of progressively cracking reinforced concrete beams', ACI J., 81(3), 268-278
  6. Cas, B., Bratina, S., Saje, M. and Planinc, I. (2004), 'Non-linear analysis of composite steel-concrete beams with incomplete interaction', Steel and Composite Structures, 4(6), 489-507 https://doi.org/10.12989/scs.2004.4.6.489
  7. CEB (Comite Euro-Intemational du Beton), (1984) CEB Design Manual on Structural Effects of Time-Dependent Behaviour of Concrete, edited by Chiorino, M. A., Napoli, P., Mola, E and Koprna, M., Georgi Publishing, Saint-Saphorin, Switzerland
  8. CEB-FIB (Comite Euro-International du Beton -Federation International de la Precontrainte) (1993), Model Code 1990: Design Code, Thomas Telford, London
  9. Cook, R., Malkus, D., Plesha, M. and Witt, R. (2001), Concepts and Applications of Finite Element Analysis, 4th edition, Wiley
  10. Cosenza, E. and Mazzolani, S. (1993), 'Linear-elastic analysis of composite beams with partial shear interaction', Proc. of the First Italian Workshop on Composite Structures, University of Trento June 1993. (In Italian)
  11. Cosenza, E. and Zandonini, R. (1999), 'Composite Construction', edited by Chen Wai-Fah in Structural Engineering Handbook, CRC Press LLC
  12. Dall'Asta, A. and Zona, A. (2004), 'Three-field mixed formulation for the non-linear analysis of composite beams with deformable shear connection', Finite Elements in Analysis and Design, 40, 425-448. https://doi.org/10.1016/S0168-874X(03)00071-4
  13. Dall'Asta, A. and Zona, A. (2002), 'Non-linear analysis of composite beams by a displacement approach', Comp. Struct., 80, 2217-2228 https://doi.org/10.1016/S0045-7949(02)00268-7
  14. Dezi, L., Gara, E, Leoni, G and Tarantino, A. M. (2001), 'Time dependent analysis of shear-lag effect in composite beams', J. Eng. Mech., 127(1), 71-79 https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71)
  15. Dezi, L., Leoni, G and Tarantino, A. M. (1998), 'Creep and shrinkage analysis of composite beams', Progress in Structural Engineering and Materials, 1(2), 170-177
  16. Dezi, L., Leoni, G and Tarantino, A. M. (1996), 'Algebraic methods for creep analysis of continuous composite beams', J. Struct. Eng., ASCE, 122(4),423-430 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:4(423)
  17. Dezi, L. and Tarantino, A. M. (1993a), 'Creep in composite continuous beams - I: Theoretical treatment', J. Struct. Eng., ASCE, 119(7), 2095-2111 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2095)
  18. Dezi, L. and Tarantino, A. M. (1993b), 'Creep in composite continuous beams - II: Parametric study', J. Struct. Eng., ASCE, 119(7),2112-2133 https://doi.org/10.1061/(ASCE)0733-9445(1993)119:7(2112)
  19. Eurocode 5 (1995), Design of timber structures - Part 1.1: General rules and rules for buildings, CEN
  20. Fabbrocino, G, Manfredi, G and Cosenza, E. (2000), 'Analysis of continuous composite beams including partial interaction and bond', J. Struct. Eng., ASCE, 126(11), 1288-1294 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1288)
  21. Faella, C., Martinelli, E. and Nigro, E. (2003), 'Steel connection nonlinearity and deflections of steel-concrete composite beams: A simplified approach', J. Struct. Eng., ASCE, 129(1), 12-20 https://doi.org/10.1061/(ASCE)0733-9445(2003)129:1(12)
  22. Faella, C; Martinelli, E. and Nigro, E. (2002), 'Steel and concrete composite beams with flexible shear connection: 'exact' analytical expression of the stiffuess matrix and applications', Comput. Struct., 80, 1001-1009 https://doi.org/10.1016/S0045-7949(02)00038-X
  23. Fragiacomo, M., Amadio, C. and Macorini, L. (2002), 'Influence of viscous phenomena on steel-concrete composite beams with normal or high performance slab', Steel and Composite Structures, 2(2), 85-98 https://doi.org/10.12989/scs.2002.2.2.085
  24. Gattesco, N. (1999), 'Analytical modelling of nonlinear behaviour of composite beams with deformable connection', J. Constr. Steel Res., 52, 195-218 https://doi.org/10.1016/S0143-974X(99)00026-7
  25. Gere.T, M. (2001), Mechanics of Materials, 5th edition, Brooks/Cole.
  26. Gilbert, R. I. (1988), Time Effeas in Concrete Structures, Elservier Science Publishers, Amsterdam, The Netherlands
  27. Gilbert, R. I. and Bradford, M. A. (1995), 'Time-dependent behavior of continuous composite beams at service loads', J. Struct. Eng., ASCE, 121(2),319-327
  28. Girhammar, U. A. and Pan, D. (1993), 'Dynamic analysis of composite members with inter1ayer slip', Int. J. Solids Struct., 30(6), 797-823 https://doi.org/10.1016/0020-7683(93)90041-5
  29. Goodman, J. R. and Popov, E. P. (1968), 'Layered beam systems with interlayer slip', J. Struct. Div , Proc. of the American Society of Civil Engineers, 94(11), 2535-2547
  30. Kwak, H. G and Seo, Y. L. (2002), 'Time-dependent behaviour of composite beams with flexible connectors', Comput. Method Appl. Mech. Eng., 191, 3751-3772 https://doi.org/10.1016/S0045-7825(02)00293-1
  31. Loh, H., Uy, B. and Bradford, M. A. (2004), 'The effects of partial shear interaction in the hogging moment regions of composite beams: Part II - Analytical study', J. Constr. Steel Res., 60, 921-962 https://doi.org/10.1016/j.jcsr.2003.10.008
  32. Moin, P. (2001), Fundamentals of Engineering Numerical Analysis, Cambridge University Press
  33. Newmark, N. M., Siess, C. P. and Viest I. M. (1951), 'Tests and analysis of composite beams with incomplete interaction', Proc. of the Society of Experimental Stress Analysis, 9(1), 75-92
  34. Nguyen, N. T, Oehlers, D. J. and Bradford, M. A. (1998), 'A rational model for the degree of interaction in composite beams with flexible shear connectors', Mechanics of Structures and Machines, 26(2),175-194 https://doi.org/10.1080/08905459808945426
  35. Oehlers, D. J. and Bradford, M. A. (1995), Composite Steel and Concrete Structural Members: Fundamental Behaviour, Pergamon Press, Oxford
  36. Oehlers, D. J. and Sved, G (1995), 'Composite beams with limited-slip-capacity connectors', J. Struct. Eng., ASCE, 121(6), 932-938
  37. Ranzi, G and Bradford, M. A. (2006), 'Analytical solutions for the time-dependent behaviour of composite beams with partial interaction', Int. J Solids Struct., 43(13), 3770-3793 https://doi.org/10.1016/j.ijsolstr.2005.03.032
  38. Ranzi, G and Bradford, M. A. (2005), 'Time analysis of structural concrete elements using the equivalent displacement approach', Mater. Struct., 38(280), 609-616 https://doi.org/10.1007/BF02481592
  39. Ranzi, G, Bradford, M. A. and Uy, B. (2004), 'A direct stiffness analysis of a composite beam with partial interaction', Int. J. Numer. Methods Eng., 61, 657-672 https://doi.org/10.1002/nme.1091
  40. Salari, M. R. and Spacone, E. (2001), 'Finite element formulations of one-dimensional elements with bond-slip', Eng. Struct., 23(7), 815-826 https://doi.org/10.1016/S0141-0296(00)00094-8
  41. Seracino, R., Lee, C. T, Lim, T C. and Lim, J. Y. (2004), 'Partial interaction stresses in continuous composite beams under serviceability loads', J. Constr. Steel Res., 60, 1525-1543 https://doi.org/10.1016/j.jcsr.2004.01.002
  42. Tarantino, A. M. and Dezi, L. (1992), 'Creep effects in composite beams with flexible shear connectors', J Struct. Eng., ASCE, 118(8),2063-2081 https://doi.org/10.1061/(ASCE)0733-9445(1992)118:8(2063)
  43. Virtuoso, F. and Vieira, R. (2004), 'Time dependent behaviour of continuous composite beams with flexible connection', J. Constr. Steel Res., 60, 451-463 https://doi.org/10.1016/S0143-974X(03)00123-8
  44. Wu, Y. F., Oehlers, D. J. and Griffith, M. C. (2002), 'Partial-interaction analysis of composite beam/ column members', Mech. Struct. Mach., 30(3), 309-332 https://doi.org/10.1081/SME-120004420

Cited by

  1. Numerical procedure for nonlinear behavior analysis of composite slim floor beams vol.106, 2015, https://doi.org/10.1016/j.jcsr.2014.12.015
  2. Analytical and numerical analysis of multilayered beams with interlayer slip vol.32, pp.6, 2010, https://doi.org/10.1016/j.engstruct.2010.02.015
  3. State of the art on the time-dependent behaviour of composite steel–concrete structures vol.80, 2013, https://doi.org/10.1016/j.jcsr.2012.08.005
  4. Full-scale long-term experiments of simply supported composite beams with solid slabs vol.67, pp.3, 2011, https://doi.org/10.1016/j.jcsr.2010.11.001
  5. Analysis of concrete shrinkage along truss bridge with steel-concrete composite deck vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1237
  6. Behaviour of Stiffened Composite Beams with Partial Shear Interaction Accounting for Time Effects vol.14, 2011, https://doi.org/10.1016/j.proeng.2011.07.050
  7. Lenkiamosios gelžbetoninės sijos su papildoma anglies pluošto kompozito armatūra laikomosios galios sumažėjimas dėl šlyties vol.1, pp.5, 2009, https://doi.org/10.3846/mla.2009.5.08
  8. Locking problems in the partial interaction analysis of multi-layered composite beams vol.30, pp.10, 2008, https://doi.org/10.1016/j.engstruct.2008.04.006
  9. Generalised Beam Theory for composite beams with longitudinal and transverse partial interaction vol.22, pp.10, 2017, https://doi.org/10.1177/1081286516653799
  10. FE modeling and numerical investigation of shallow cellular composite floor beams vol.119, 2016, https://doi.org/10.1016/j.jcsr.2015.12.022
  11. Flexural performance of composite walls under out-of-plane loads vol.34, pp.4, 2006, https://doi.org/10.12989/scs.2020.34.4.525
  12. Experimental Research of the Time-Dependent Effects of Steel–Concrete Composite Girder Bridges during Construction and Operation Periods vol.13, pp.9, 2006, https://doi.org/10.3390/ma13092123
  13. Improved analytical formulation for Steel-Concrete (SC) composite walls under out-of-plane loads vol.38, pp.4, 2006, https://doi.org/10.12989/scs.2021.38.4.463