• Title/Summary/Keyword: paromomycin

Search Result 16, Processing Time 0.023 seconds

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.

GUS Gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.) (오이에서 체세포배 발생을 통한 GUS유전자의 발현 및 식물체 재생)

  • Kim, Hyun-A;Lee, Boo-Youn;Jeon, Jin-Jung;Choi, Dong-Woog;Choi, Pil-Son;Utomo, Setyo Dwi;Lee, Jae-Hyoek;Kang, Tong-Ho;Lee, Young-Jin
    • Journal of Plant Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.275-280
    • /
    • 2008
  • One of the limitation for Agrobacterium-mediated transformation via organogenesis from cotyledon explants routinely in cucumber is the production of chimeric plants. To overcome the limitation, Agrobacterium-mediated transformation system via somatic embryogenesis from hypocotyl explants of cucumber (c.v., Eunsung) on the selection medium with paromomycin as antibiotics was developed. The hypocotyl explants were inoculated with Agrobacterium tumefaciens strain EHA101 carrying binary vector pPTN290; then were subsequently cultured on the following media: co-cultivation medium for 2 days, selection medium for $5{\times}14$ days, and regeneration medium. The T-DNA of the vector (pPTN290) carried two cassettes, Ubi promoter-gus gene as reporter and 35S promoter-nptll gene conferring resistance to paromomycin as selectable agent. The confirmation of stable transformation and the efficiency of transformation was based on the resistance to paromomycin indicated by the growth of putative transgenic calli on selection medium amended with 100mg/L paromomycin, and GUS gene expression. Forty eight clones (5.2%) with GUS gene expressed of 56 callus clones with resistance to paromomycin were independently obtained from 928 explants inoculated. Of 48 clones, transgenic plants were only regenerated from 5 clones (0.5%) at low frequency. The histochemical GUS assay in the transgenic seeds ($T_1$) also revealed that the gus gene was successfully integrated and segregated into each genome of transgenic cucumber.

Use of Paromomycin as a Selectable Marker for the Transformation of Chinese Cabbage (배추의 형질전환용 선발항생제로서 Paromomycin의 이용)

  • Cho, Mi-Ae;Min, Sung-Ran;Ko, Suck-Min;Liu, Jang-Ryol;Lee, Jun-Haeng;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.271-276
    • /
    • 2006
  • Hypocotyl explants of Chinese cabbage (us. 'Jeong Sang' and 'Seoul') produced adventitious shoots on Murashige and Skoog (MS) basal medium supplemented with 4mg/L $AgNO_3$, 5 mg/L acetosyringone, 4 mg/L 6-benzyladenine and 3mg/L alpha-naphthaleneacetic acid (SI) after cocoultivation with strains of Agrobacterium tumefaciens (LBA4404) harboring the pCAMBIA1301 and the $_PPTN290$ containing hygromycin-resistance gene and paromomycin-resistance gene as a selectable marker genes, respectively. There was a significant difference in the frequency of transgenic plants depending on antibiotics and cultivars used. Paromomycin was better than hygromycin, and cultivar 'Jeong-sang' was higher than 'c.v. Seoul' in the frequency of transgenic plants. In particular, the highest frequency (0.70%) of transgenic plants was obtained from selection medium (SI) containing 100mg/L paromomycin in c.v., 'Jeong-sang' GUS positive response were obtained 9 plants and 3 plants from the cultivars, 'Jeong-sang' and 'Seoul', respectively. They were grown to maturity in a greenhouse and normally produced $T_1$ seeds. GUS histochemical assay for progeny $(T_1)$ revealed that the transgenes were expressed in the plant genome.

Expression of CP4 5-Enol-Pyruvylshikimate-3- Phosphate Synthase Transgene in Inbred Line of Korean Domestic Maize (Zea may L.) (국내 옥수수 순계주에서 CP4 5-Enol- Pyruvylshikimate-3- Phosphate Synthase 유전자의 발현)

  • Cho, Mi-Ae;Kwon, Suk-Yoon;Kim, Jin-Seog;Lee, Byoung-Kyu;Moon, Choo-Yeun;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.375-380
    • /
    • 2007
  • This study was conducted to develop herbicide-resistance domestic maize plants by introducing the CP4 5-enol-pyruvylshikimate-3-phosphate synthase (CP4 EPSPS) gene using Agrobacterium tumefaciens-mediated immature embryo transformation. Immature embryos of five genotypes (HW1, KL103, HW3, HW4, HW7) were co-cultivated with strains Agrobacterium tumefaciens (strain C58C1) containing the binary vector (pCAMBIA2300) carrying Ubiquitin promoter-CP4 EPSPS gene and Cauliflower mosaic virus 35S (CaMV35S) promoter-nptll gene conferring resistance to paromomycin as a selective agent. The presence and expression of CP4 EPSPS transgene were confirmed by PCR, RT-PCR and Northern blot analysis, respectively. Also, the resistance to glyphosate in the transgenic maize ($T_1$) was analyzed by shikimate accumulation assay. The frequency (%) of paromomycin-resistance callus was 0.37, 0.03, 2.20, 2.37, and 0.81% in pure lines HW1, KL103, HW3, HW4 and HW7, respectively. EPSP transgene sequences were amplified in putative transgenic plants that regenerated from paromomycin-resistance calli of two inbred lines (HW3, HW4). Of them, RT-PCR and Northern blot analyses revealed that the transgene was only expressed in two transgenic events (M266, M104) of HW4 inbred line, and a mild glyphosate resistance of transgenic event (M266) was confirmed by the lower shikimate accumulation in leaf segments. These results demonstrate that transgenic maize with herbicide-resistance traits in Korean genotype can be genetically obtained.

Stable Transformation via Callus Formation and Rhizogenesis from the Cultures of Hypocotyl Explant of Chinese Cabbage (배추의 배축절편으로부터 캘러스와 뿌리 발생을 통한 안정적 형질전환)

  • Cho, Mi-Ae;Kim, Choon-Ae;Min, Sung-Ran;Ko, Suck-Min;Liu, Jang-Ryol;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.139-144
    • /
    • 2007
  • Hypocotyl explants of Chinese cabbage (cvs. "Jeong Sang") produced transgenic calli on callus induction medium (MS salt, B5 vitamin, 5 mg/L acetosyringone, 1 mg/L 2,4-D, 3% sucrose, 400 mg/L cefotaxime, 100 mg/L paromomycin, pH 5.8) after cocultivation with strains of Agrobacterium tumefaciens (EHA101, LBA4404, GV3101) harboring the pPTN290 containing paromomycin-resistance gene as a selectable marker, and then they transferred to root induction medium (1/2MS salt, MS vitamins, 2% sucrose, 100 mg/L paromomycin, 100 mg/L cefotaxime, pH 5.8) and shoot induction medium (MS salt, B5 vitamin, 4 mg/L $AgNO_3$, 4 mg/L 6-benzyladenine, 3 mg/L alpha-naphthaleneacetic acid, 100 mg/L paromomycin, 100 mg/L cefotaxime, 3% sucrose, pH 5.8) in order. There was a significant difference in the frequency of transgenic calli depending on Agrobacterium strains. In particular, the highest frequency (6.1%) of transgenic calli was obtained from the hypocotyls cocultivated with EHA101 strains. Also, the frequency (%) of transgenic root and plants from each transgenic callus clone were obtained with 60.7% and 38.2% in EHA101, with 8.3% and 0% in LBA4404, with 20.5% and 85.7% in GV3101 strains, respectively. They were grown to maturity in a greenhouse and normally produced $T_2$ seeds. GUS histochemical assay for progeny ($T_2$) revealed that the transgenes was expressed in the plant genome, and progeny analysis from 7 independent transgenic events demonstrated that the transformants transmitted the transgene as a single or multiple functional locus.

The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.) (Agrobacterium에 의한 오이 형질전환에서 자엽절 절편의 이용)

  • Jang, Hyun-A;Kim, Hyun-A;Kwon, Suk-Yoon;Choi, Dong-Woog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.38 no.3
    • /
    • pp.198-202
    • /
    • 2011
  • Agrobacterium tumefaciens-mediated cotyledonary-node explants transformation was used to produce transgenic cucumber. Cotyledonary-node explants of cucumber (Cucumis sativus L. cv., Eunsung) were co-cultivated with Agrobacterium strains (EHA101) containing the binary vector (pPZP211) carrying with CaMV 35S promoter-nptII gene as selectable marker gene and 35S promoter-DQ gene (unpublished data) as target gene. The average of transformation efficiency (4.01%) was obtained from three times experiments and the maximum efficiency was shown at 5.97%. A total of 9 putative transgenic plants resistant to paromomycin were produced from the cultures of cotyledonary-node explants on selection medium. Among them, 6 transgenic plants showed that the nptII gene integrated into each genome of cucumber by Southern blot analysis.

Genetic Transformation of Watermelon (Citrullus vulgaris Schard.) by Callus Induction (캘러스 유도에 의한 수박 형질전환)

  • Kwon, Jung-Hee;Park, Sang-Mi;Lim, Mi-Young;Shin, Yoon-Sup;Harn, Chee-Hark
    • Journal of Plant Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2007
  • The genetic transformation of watermelon by Agrobacterium has been known very difficult and a few successful cases have been reported by obtaining the direct shoot formation. However, since this direct shoot formation is not guaranteed the stable transformation, the stable transformation with reproducibility is required by a different approach such as a callus induced manner. The best conditions for inducing the callus from cotyledon and root explants of watermelon were 2 mg/L zeatin + 0.1 mg/L IAA and 2 mg/L BA + 0.1 mg/L 2,4-D, respectively. The GFP expression in the callus was identified and monitored through fluorescent microscopy after transformation with pmGFP5-ER vector. Paromomycin rather than kanamycin was used for selecting the nptll gene expression because it was more effective to select the watermelon explants. Four different callus types were observed and the solid green callus showed stronger GFP expression. The highest frequency of GFP expression in the callus developed from cotyledon was 9.0% (WM8 inbred line), while the highest frequency from root was 8.3% (WM6 inbred line). The WMV-CP was transformed using the method of GFP transformation and the genetic transformation of WMV-CP was confirmed by PCR and Southern blot analysis. Here we present a system for callus induction of watermelon explant and the callus induced method would facilitate the establishment of stable watermelon transformation.

Production of Transgenic Maize (Zea mays L.) Using Agrobacterium tumefaciens-Mediated Transformation (Agrobacterium tumefaciens 공동배양법을 이용한 옥수수 형질전환체 생산)

  • Cho Mi-Ae;Park Yun-Ok;Kim Jin-Suck;Park Ki-Jin;Min Hwang-Ki;Liu Jang-Ryol;Clemente Tom;Choi Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • Agrobacterium tumefaciens-mediated immature embryo transformation was used to produce transgenic maize. Immature embryo of Hi II genotype were co-cultivated with strains Agrobacterium tumefaciens (C58C1) containing the binary vectors (pPTN290) carrying with Ubiquitin promoter-GUS gene as reporter gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent. Seven embryogenic callus lines transformed showed the resistance in paromomycin antibiotics. Histochemical GUS assay showed that 7 individual lines transformed with the GUS gene were positive response among the transformants. Southern blot analysis revealed that the nptll gene segregated and expressed in their progeny.

The development of transgenic maize expressing Actinobacillus pleuropneumoniae ApxIIA gene using Agrobacterium (아그로박테리움을 이용한 Actinobacillus pleuropneumoniae ApxIIA (ApxII toxin) 유전자 발현 옥수수 형질전환체 개발)

  • Kim, Hyun-A;Yoo, Han-Sang;Yang, Moon-Sik;Kwon, Suk-Yoon;Kim, Jin-Seog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.313-318
    • /
    • 2010
  • To develop edible vaccines for swine, the embryogenic calli (type II) derived from HiII genotype were inoculated with A. tumefaciens strain C58C1 containing the binary vector pMYV611, 613, 616, and V621, 622 and 623 respectively. Six of those vectors carry nptII gene which confers resistance to paromomycin and apxIIA gene producing ApxII toxin which is generated in various serum types of A. pleuropneumoniae as a target gene. The 4,120 callus clones for pMYV611, 5,959 callus clones for pMYV613, 7,581 callus clones for pMYV616, 52,329 callus clones for V621, 48,948 callus clones for V622, and 56,188 callus clones for V623 were inoculated. The frequency of positive response clone was confirmed into range of 2.3% - 4.4% for each vectors by NPTII ELISA kit assay, and the selected callus clones of them were finally 3 callus clones from pMYV611 (0.07%), 4 callus clones from pMYV613 (0.07%), 2 callus clones from pMYV616 (0.03%), 51 callus clones from V621 (0.1%), 72 callus clones from V622 (0.15%), and 102 callus clones from V623 (0.18%) respectively. From the selected callus clones of each binary vector, the integration of the apxIIA gene into maize genome was detected from 2 plants of pMYV613 and 2 plants of V623 by Southern blot analysis.

Development of transgenic cucumbers expressing Arabidopsis Nit gene (애기장대 Nit유전자 발현 오이 형질전환체 개발)

  • Jang, Hyun A;Lim, Ka Min;Kim, Hyun A;Park, Yeon-Il;Kwon, Suk Yoon;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.198-202
    • /
    • 2013
  • To produce transgenic cucumber expressing Nit gene coffering abiotic resistance, the cotyledonary-node explants of cucumber (cv. Eunsung) were inoculated with A. tumefaciens transformed with pPZP211 or pCAMBIA2300 carrying Nit gene, that has cis-acting element involved in resistance to various abiotic environmental stresses. After co-cultivation, the procedures of selection, shoot initiation, shoot elongation, and plant regeneration were followed by cotyledonary-node transformation method (CTM, Jang et al. 2011). The putative transgenic plants were selected when shoots were grown to a length greater than 3 cm from the cotyledonary-node explants on selection medium supplemented with 100 mg/L paromomycin as a selectable agent. The confirmation of transgenic cucumber was based on the genomic PCR, Southern blot analysis, RT-PCR, and Northern blot analysis. A 105 shoots (4.12%) selected from the selection mediums were obtained from 2,547 explants inoculated. Of them, putative transgenic plants were only confirmed with 45 plants (1.77%) by genomic PCR analysis. Transgenic plants showed that the Nit genes integrated into each genome of 39 plants (1.53%) by Southern blot analysis, and the expression of gene integrated into cucumber genome was only confirmed at 6 plants (0.24%) by RT-PCR and Northern blot analysis. These results lead us to speculate that the genes were successfully integrated and expressed in each genome of transgenic cucumber.