DOI QR코드

DOI QR Code

Development of transgenic cucumbers expressing Arabidopsis Nit gene

애기장대 Nit유전자 발현 오이 형질전환체 개발

  • Jang, Hyun A (Plant Systems Engineering Research Center, KRIBB) ;
  • Lim, Ka Min (Department of Oriental Pharmaceutical Development, Nambu University) ;
  • Kim, Hyun A (Plant Systems Engineering Research Center, KRIBB) ;
  • Park, Yeon-Il (Department of Biology, Chungnam National Univ.) ;
  • Kwon, Suk Yoon (Plant Systems Engineering Research Center, KRIBB) ;
  • Choi, Pil Son (Department of Oriental Pharmaceutical Development, Nambu University)
  • 장현아 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 임가민 (남부대학교 한방제약개발학과 약용식물형질전환연구소) ;
  • 김현아 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 박연일 (충남대학교 생물학과) ;
  • 권석윤 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 최필선 (남부대학교 한방제약개발학과 약용식물형질전환연구소)
  • Received : 2013.10.24
  • Accepted : 2013.11.10
  • Published : 2013.12.31

Abstract

To produce transgenic cucumber expressing Nit gene coffering abiotic resistance, the cotyledonary-node explants of cucumber (cv. Eunsung) were inoculated with A. tumefaciens transformed with pPZP211 or pCAMBIA2300 carrying Nit gene, that has cis-acting element involved in resistance to various abiotic environmental stresses. After co-cultivation, the procedures of selection, shoot initiation, shoot elongation, and plant regeneration were followed by cotyledonary-node transformation method (CTM, Jang et al. 2011). The putative transgenic plants were selected when shoots were grown to a length greater than 3 cm from the cotyledonary-node explants on selection medium supplemented with 100 mg/L paromomycin as a selectable agent. The confirmation of transgenic cucumber was based on the genomic PCR, Southern blot analysis, RT-PCR, and Northern blot analysis. A 105 shoots (4.12%) selected from the selection mediums were obtained from 2,547 explants inoculated. Of them, putative transgenic plants were only confirmed with 45 plants (1.77%) by genomic PCR analysis. Transgenic plants showed that the Nit genes integrated into each genome of 39 plants (1.53%) by Southern blot analysis, and the expression of gene integrated into cucumber genome was only confirmed at 6 plants (0.24%) by RT-PCR and Northern blot analysis. These results lead us to speculate that the genes were successfully integrated and expressed in each genome of transgenic cucumber.

환경스트레스 저항성 오이 형질전환체 생산을 위해서 오이 "Eunsung" 품종의 자엽절 절편을 Nit유전자를 포함하는 pPZP211와 pCAMBIA2300 발현벡터로 각각 형질전환된 Agrobacterium과 공동 배양하였다. 공동배양 후 형질전환체 선발, 형질전환체 유도, 신장, 유식물체 생산 등은 자엽절 절편을 이용하는 CTM방법(Jang et al. 2011)에 따라 수행하였다. 발현벡터에 따라 선발배지에 100 mg/L paromomycin을 첨가하여 선발과정을 거쳤으며, 선발배지에서 3 cm크기의 shoot를 유도한 후 PCR, Southern, RT-PCR 및 Northern분석을 통해 형질전환 여부를 확인하였다. 공동배양 한 2,547개의 자엽절 절편으로부터 105개체(4.12%)가 선발배지로부터 얻어졌으며, 그들 중 45개체(1.77%)만이 Nit유전자의 PCR product를 얻을 수 있었다. 오이 genome에 Nit유전자의 도입여부를 확인하기 위하여 45개체에 대한 Southern분석을 수행한 결과 각각 39개체(1.53%)서 확인할 수 있었으며, 이중 오직 6개체(0.24%)에서만 Nit유전자가 안정적으로 발현되고 있음을 RT-PCR과 Northern분석을 통해 확인하였다. 이러한 결과는 Nit유전자가 오이 genome에 안정적으로 도입 및 발현되고 있음을 보여 주고 있음을 알 수 있었다.

Keywords

References

  1. Boyer JS (1982) Plant productivity and environment. Science 218:443-448 https://doi.org/10.1126/science.218.4571.443
  2. Chee PP (1990) Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9:245-248
  3. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Choi PS (2005) The use of glufosinate as a selective marker for the transformation of cucumber (Cucumis sativus L.). Kor J Plant Biotechnol 32:161-165 https://doi.org/10.5010/JPB.2005.32.3.161
  4. Dellaporta SL, Wood J, Hicks JB (1983) Maize DNA miniprep. In: Malmberg R, Messing J, Sussex (eds), Molecular Biology of Plants: A laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York pp:36-37
  5. Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Biotechnol 9:858-863 https://doi.org/10.1038/nbt0991-858
  6. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology-the importance of virus resistance. In Vitro Cell Dev Biol-Plant 40:346-358 https://doi.org/10.1079/IVP2004554
  7. Gal-On A, Wolf D, Antignus Y, Patlis L, Ryu KH, Min BE, Pearlsman M, Lachman O, Gaba V, Wang Y, Shiboleth YM, Yang J, Zelcer A (2005) Transgenic cucumbers harboring the 54-kDa putative gene of Cucumber fruit mottle mosaic tobamovirus are highly resistant to viral infection and protect non-transgenic scions from soil infection. Transgenic Res 14:81-93 https://doi.org/10.1007/s11248-004-3802-7
  8. Gupta N, Rathore M, Goyary D, Khare N, Anandhan S, Pande V, Ahmed Z (2012) Marker-free transgenic cucumber expressing Arabidopsis cbf1 gene confers chilling stress tolerance. Biol Plant 56:57-63 https://doi.org/10.1007/s10535-012-0016-3
  9. Guy L (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Ann Rev Plant Physiol 41:187-223 https://doi.org/10.1146/annurev.pp.41.060190.001155
  10. Jang HA, Kim HA, Kwon SY, Choi DW, Choi PS (2011) The use of cotyledonary-node explants in Agrobacterium tumefaciensmediated transformation of cucumber (Cucumis sativus L.). Kor J plant Biotechnol 38:198-202 https://doi.org/10.5010/JPB.2011.38.3.198
  11. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: ${\beta}$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907
  12. Kim HA, Lee BY, Jeon JJ, Choi DW, Choi PS, Utomo SD, Lee JH, Kang TH, Lee YJ (2008) GUS gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.). Kor J Plant Biotech 35:275-280 https://doi.org/10.5010/JPB.2008.35.4.275
  13. Lee MS (2008) Identification and functional analysis of a Arabidopsis NIT1 gene in abiotic stress tolerance. A master's thesis, Chonnam national university
  14. Ma S, Gong Q, Bohnert HJ (2006) Dissecting salt stress pathways. J Exp Bot 57:1097-110 https://doi.org/10.1093/jxb/erj098
  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Kishimoto K, Nishizawa Y, Tabei Y, Hibi T, Nakajima M, Akutsu K (2002) Detailed analysis of rice chitinase gene expression in transgenic cucumber plants showing different levels of disease resistance to gray mold (Botrytis cinerea). Plant Sci 162:655-662 https://doi.org/10.1016/S0168-9452(01)00602-1
  17. Simmonds DH, Donaldson PA (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep 19:485-490 https://doi.org/10.1007/s002990050760
  18. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  19. Szwacka M, Krzymowska M, Osuch A, Kowalczyk ME, Malepszy S (2002) Variable properties of transgenic cucumber plants containing the thaumatin II gene from Thaumatococcus daniellii. Acta Physiol Plant 24:173-185 https://doi.org/10.1007/s11738-002-0009-5
  20. Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenesis. TAG 73:11-15

Cited by

  1. Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene vol.43, pp.3, 2016, https://doi.org/10.5010/JPB.2016.43.3.341
  2. Current status of genetic transformation technology developed in cucumber (Cucumis sativus L.) vol.14, pp.3, 2015, https://doi.org/10.1016/S2095-3119(14)60899-6