• 제목/요약/키워드: Abiotic gene

검색결과 211건 처리시간 0.022초

Characterization of CaCOP1 Gene in Capsicum annuum Treated with Pathogen Infection and Various Abiotic Stresses

  • Guo, Jia;Seong, Eun-Soo;Wang, Myeong-Hyeon
    • Journal of Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.227-233
    • /
    • 2007
  • We characterized a full-length cDNA of CaCOP1 from pepper. Phylogenetic analysis based on the deduced amino acid sequence of CaCOP1 cDNA revealed high sequence similarity to the COP1 gene in Oryza sativa (84% identity). CaCOP1 shares high sequence identity with regulatory protein in Arabidopsis (84%), constitutively photomorphogenic 1 protein in Pisum sativum (81%) and COP1 homolog in Lycopersicon esculentum (79%). CaCOP1 gene exists single copy in the chili pepper genome. Expression of CaCOP1 was reduced in response to inoculation of non-host pathogens. The expression of this gene under abiotic and oxidative stresses was investigated, including 200 mM NaCl, 200 mM mannitol, cold ($4^{\circ}C$), 100 ${\mu}M$ abscisic acid (ABA), and 10 mM hydrogen peroxide ($H_2O_2$). CaCOP1 was induced significantly 3 h after low temperature treatment but not by dehydration or high salinity. Moreover, CaCOP1 was not induced by plant hormone ABA. These observations suggest that CaCOP1 gene plays a role in abiotic stress and may be belong to ABA-independent regulation system.

Global Analysis of Gene Expression upon Acid Treatment in Arabidopsis thaliana

  • Kim, Jung-Koo;Baek, Seung-A;Yoon, Seok-Joo;Park, Han-Jin;Lee, Suk-Chan;Lee, Tae-Soo;Im, Kyung-Hoan
    • The Plant Pathology Journal
    • /
    • 제25권2호
    • /
    • pp.172-178
    • /
    • 2009
  • To obtain global gene expression profiles of Arabidopsis thaliana by acid stress, seedlings were subjected to low pH stress. Using Affymetrix AH1 chips covering 24,000 genes, we analyzed gene expression patterns. Fifty-four genes were up-regulated, and 38 were down-regulated more than 3-fold after 2 h of acid stress (pH 3.0). Several defense and abiotic stress-related genes were recognized among the up-regulated genes and peroxidase and extensin genes were identified among the down-regulated genes. After 12 h treatment, relatively fewer genes showed changed expression, indicating that plants seem to adjust themselves to this abiotic stress. Most of the up-regulated genes are already known to be involved in abiotic stress responses and pathogen attacks, especially wounding. However, down-regulated genes for the members of extensins and peroxidases are specific to the acid treatment. These results suggest that acid treatment turns on genes involved in stress responses, especially in wounding and turns off genes very specific for the acid stress.

Identification and Functional Characterization of the GALACTINOL SYNTHASE (MoGolS1) Gene in Melissa officinalis Plants

  • Kim, Jun-Hyeok;Hossain, Acktar Mohammad;Kim, Na-Hyun;Lee, Dong-Ho;Lee, Ho-Joung
    • Journal of Applied Biological Chemistry
    • /
    • 제54권4호
    • /
    • pp.244-251
    • /
    • 2011
  • Galactinol and rafinose accumulation in plants is associated with stressful environmental conditions such as cold, heat, or dehydration by the action of galactinols synthase (GolS) in the raffinose family of oligosaccharides biosynthetic pathway from UDP-galactose. Moreover, several reports mentioned that GolS transcription is up regulated by various environmental stresses like cold, heat, dehydration. Therefore, to determine whether MoGolS1 was induced with the abiotic stress we analyzed the expression pattern of the gene under various abiotic stresses like heat, cold, abscisic acid, sucrose and salt concentration in the lemon balm plants grown in standard MS medium. The MoGolS1 gene was 981-bp in length encoding 326 amino acids in its sequence and shared 77 and 76% sequence similarity with Arabidopsis thaliana galactinol synthase4 (AtGolS4) and AtGolS1 genes respectively. The MoGolS1 gene was strongly expressed by the abiotic stress induced by sucrose, ABA or heat shock. It was also expressed in responses to cold, Identification and Functional Characterization of the GALACTINOL SYNTHASgene induction with various stresses may be possible for itscrucial function in abiotic stress tolerance in plants, providing a good engineering target for genetic engineering.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2010년도 정기총회 및 추계학술발표회
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

irrE, an Exogenous Gene from Deinococcus radiodurans, Improves the Growth of and Ethanol Production by a Zymomonas mobilis Strain Under Ethanol and Acid Stresses

  • Zhang, Ying;Ma, Ruiqiang;Zhao, Zhonglin;Zhou, Zhengfu;Lu, Wei;Zhang, Wei;Chen, Ming
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권7호
    • /
    • pp.1156-1162
    • /
    • 2010
  • During ethanol fermentation, bacterial strains may encounter various stresses, such as ethanol and acid shock, which adversely affect cell viability and the production of ethanol. Therefore, ethanologenic strains that tolerate abiotic stresses are highly desirable. Bacteria of the genus Deinococcus are extremely resistant to ionizing radiation, ultraviolet light, and desiccation, and therefore constitute an important pool of extreme resistance genes. The irrE gene encodes a general switch responsible for the extreme radioresistance of D. radiodurans. Here, we present evidence that IrrE, acting as a global regulator, confers high stress tolerance to a Zymomonas mobilis strain. Expression of the gene protected Z. mobilis cells against ethanol, acid, osmotic, and thermal shocks. It also markedly improved cell viability, the expression levels and enzyme activities of pyruvate decarboxylase and alcohol dehydrogenase, and the production of ethanol under both ethanol and acid stresses. These data suggest that irrE is a potentially promising gene for improving the abiotic stress tolerance of ethanologenic bacterial strains.

Phenylalanine Ammonia-Lyase Gene (NtPAL4) Induced by Abiotic Stresses in Tobacco (Nicotiana tabacum)

  • Han, Woong;Wang, Myeong-Hyeon
    • 한국자원식물학회지
    • /
    • 제23권6호
    • /
    • pp.535-540
    • /
    • 2010
  • Phenylalanine ammonia-lyase (PAL), a key enzyme of the phenylpropanoid biosynthesis pathway, is activated by a number of developmental and environmental cues. The coding region of the NtPAL4 gene was 2,154 bp in length, and its deduced protein was composed of 717 amino acids. Sequence analysis of NtPAL4 cDNA from tobacco (Nicotiana tabacum L.) revealed high structural similarity to PAL genes of other plant species. The NtPAL4 gene exists as a single copy in the tobacco plant, and its transcripts were strongly expressed in flowers and leaves. NtPAL4 expression was significantly induced in response to NaCl, mannitol, and cold treatments, but it was not induced by abscisic acid (ABA). NtPAL4 expression decreased gradually after treatment with ABA and $H_2O_2$; however, NtPAL4 transcripts accumulated after treatment with methyl viologen (MV). Our results suggest that the NtPAL4 gene may function in response to abiotic stresses.

Expression of dehydration responsive element-binding protein-3 (DREB3) under different abiotic stresses in tomato

  • Islam, Mohammad Saiful;Wang, Myeong-Hyeon
    • BMB Reports
    • /
    • 제42권9호
    • /
    • pp.611-616
    • /
    • 2009
  • We investigated the expression pattern of dehydration responsive element-binding protein-3 in tomato under different abiotic stresses. Full length LeDREB3 cDNA was isolated from tomato plant, followed by phylogenetic analysis based on deduced amino acid sequences that revealed significant sequence similarity to DREB proteins belonging to diverse families of plant species. Southern blot analysis showed duplicate copies of LeDREB3 in the tomato genome while organ-specific expression profiling indicated constitutive expression of LeDREB3 in all tested organs, which was particularly strong in flower. LeDREB3 expression was significantly induced by Nacl, drought, low temperature and $H_2O_2$. Moreover, LeDREB3 was slightly regulated by treatment with ABA and MV. These observations suggest that the LeDREB3 gene may be involved in the response of the tomato plant to stress.

Isolation of Multi-Abiotic Stress Response Genes to Generate Global Warming Defense Forage Crops

  • Ermawati, Netty;Hong, Jong Chan;Son, Daeyoung;Cha, Joon-Yung
    • 한국초지조사료학회지
    • /
    • 제41권4호
    • /
    • pp.242-249
    • /
    • 2021
  • Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.

Screening of Multiple Abiotic Stress-Induced Genes in Italian Ryegrass leaves

  • Lee, Sang-Hoon;Rahman, Md. Atikur;Kim, Kwan-Woo;Lee, Jin-Wook;Ji, Hee Chung;Choi, Gi Jun;Song, Yowook;Lee, Ki-Won
    • 한국초지조사료학회지
    • /
    • 제38권3호
    • /
    • pp.190-195
    • /
    • 2018
  • Cold, salt and heat are the most critical factors that restrict full genetic potential, growth and development of crops globally. However, clarification of genes expression and regulation is a fundamental approach to understanding the adaptive response of plants under unfavorable environments. In this study, we applied an annealing control primer (ACP) based on the GeneFishing approach to identify differentially expressed genes (DEGs) in Italian ryegrass (cv. Kowinearly) leaves under cold, salt and heat stresses. Two-week-old seedlings were exposed to cold ($4^{\circ}C$), salt (NaCl 200 mM) and heat ($42^{\circ}C$) treatments for six hours. A total 8 differentially expressed genes were isolated from ryegrass leaves. These genes were sequenced then identified and validated using the National Center for Biotechnology Information (NCBI) database. We identified several promising genes encoding light harvesting chlorophyll a/b binding protein, alpha-glactosidase b, chromosome 3B, elongation factor 1-alpha, FLbaf106f03, Lolium multiflorum plastid, complete genome, translation initiation factor SUI1, and glyceraldehyde-3-phosphate dehydrogenase. These genes were potentially involved in photosynthesis, plant development, protein synthesis and abiotic stress tolerance in plants. However, this study provides new insight regarding molecular information about several genes in response to multiple abiotic stresses. Additionally, these genes may be useful for enhancement of abiotic stress tolerance in fodder crops as well a crop improvement under unfavorable environmental conditions.