• Title/Summary/Keyword: parametric tests

Search Result 420, Processing Time 0.027 seconds

Unit Root Tests for Autoregressive Moving Average Processes Based on M-estimators

  • Shin, Dong-Wan;Lee, Oesook
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.301-314
    • /
    • 2002
  • For autoregressive moving average (ARMA) models, robust unit root tests are developed using M-estimators. The tests are parametric in the sense ARMA parameters are estimated jointly with unit roots. A Monte-Carlo experiment reveals superiority of the parametric tests over the semipararmetric tests of Lucas (1995a) in terms of both empirical sizes and powers.

Quantile-based Nonparametric Test for Comparing Two Diagnostic Tests

  • Kim, Young-Min;Song, Hae-Hiang
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.3
    • /
    • pp.609-621
    • /
    • 2007
  • Diagnostic test results, which are approximately normal with a few number of outliers, but non-normal probability distribution, are frequently observed in practice. In the evaluation of two diagnostic tests, Greenhouse and Mantel (1950) proposed a parametric test under the assumption of normality but this test is inappropriate for the above non-normal case. In this paper, we propose a computationally simple nonparametric test that is based on quantile estimators of mean and standard deviation, instead of the moment-based mean and standard deviation as in some parametric tests. Parametric and nonparametric tests are compared with simulations under the assumption of, respectively, normality and non-normality, and under various combinations of the probability distributions for the normal and diseased groups.

Comparison of Parametric and Bootstrap Method in Bioequivalence Test

  • Ahn, Byung-Jin;Yim, Dong-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.367-371
    • /
    • 2009
  • The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled data sets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

A comparison of tests for homoscedasticity using simulation and empirical data

  • Anastasios Katsileros;Nikolaos Antonetsis;Paschalis Mouzaidis;Eleni Tani;Penelope J. Bebeli;Alex Karagrigoriou
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.1
    • /
    • pp.1-35
    • /
    • 2024
  • The assumption of homoscedasticity is one of the most crucial assumptions for many parametric tests used in the biological sciences. The aim of this paper is to compare the empirical probability of type I error and the power of ten parametric and two non-parametric tests for homoscedasticity with simulations under different types of distributions, number of groups, number of samples per group, variance ratio and significance levels, as well as through empirical data from an agricultural experiment. According to the findings of the simulation study, when there is no violation of the assumption of normality and the groups have equal variances and equal number of samples, the Bhandary-Dai, Cochran's C, Hartley's Fmax, Levene (trimmed mean) and Bartlett tests are considered robust. The Levene (absolute and square deviations) tests show a high probability of type I error in a small number of samples, which increases as the number of groups rises. When data groups display a nonnormal distribution, researchers should utilize the Levene (trimmed mean), O'Brien and Brown-Forsythe tests. On the other hand, if the assumption of normality is not violated but diagnostic plots indicate unequal variances between groups, researchers are advised to use the Bartlett, Z-variance, Bhandary-Dai and Levene (trimmed mean) tests. Assessing the tests being considered, the test that stands out as the most well-rounded choice is the Levene's test (trimmed mean), which provides satisfactory type I error control and relatively high power. According to the findings of the study and for the scenarios considered, the two non-parametric tests are not recommended. In conclusion, it is suggested to initially check for normality and consider the number of samples per group before choosing the most appropriate test for homoscedasticity.

A Study of Non-parametric Statistical Tests to Analyze Trend in Water Quality Data (수질자료의 추세분석을 위한 비모수적 통계검정에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.93-103
    • /
    • 1995
  • This study was carried out to suggest the best statistical test to analyze the trend in monthly water quality data. Traditional parametric tests such as t-test and regression analysis are based on the assumption that the underlying population has a normal distribution and regression analysis additionally assumes that residual errors are independent. Analyzing 9-years monthly COD data collected at Paldang in Han River, the underlying population was found to be neither normal nor independent. Therefore parametric tests are invalid for trend detection. Four Kinds of nonparametric statistical tests, such as Run Test, Daniel test, Mann-Kendall test, and Time Series Residual Analysis were applied to analyze the trend in the COD data, Daniel test and Mann-Kendall test indicated upward trend in COD data. The best nonparametric test was suggested to be Daniel test, which is simple in computation and easy to understand the intuitive meaning.

  • PDF

A Study of Non-parametric Statistical Tests to Quantify the Change of Water Quality (수질변화의 계량화를 위한 비모수적 통계 준거에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1997
  • This study was carried out to suggest the best statistical test which may be used to quantify the change of water quality between two groups. Traditional t-test may not be used in cases where the normality of underlying population distribution is not assured. Three non-parametric tests which are based on the relative order of the measurements, were studied to find out the applicability in water quality data analysis. The sign test is based on the sign of the deviation of the measurement from the median value, and the binomial distribution table is used. The signed rank test utilizes not only the sign but also the magnitude of the deviation. The Wilcoxon rank-sum test which is basically same as Mann-Whitney test, tests the mean difference between two independent samples which may have missing data. Among the three non-parametric tests studied, the singed rank test was found out to be applicable in the quantification of the change of water quality between two samples.

  • PDF

Rank Transformation Technique in a Two-stage Two-level Balanced Nested Design (이단계 이수준 균형지분모형의 순위변환 기법연구)

  • Choi Young-Hun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.1
    • /
    • pp.111-120
    • /
    • 2006
  • In a two-stage two-level balanced nested design, type I error rates for the parametric tests and the rank transformed tests for the main effects and the nested effects are in overall similar to each other. Furthermore, powers for the rank transformed statistic for the main effects and the nested effects in a two-stage two-level balanced nested design are generally superior to powers for the parametric statistic When the effect size and the sample size are increased, we can find that powers increase for the parametric statistic and the rank transformed statistic are dramatically improved. Especially for the case of the fixed effects in the asymmetric distributions such as an exponential distribution, powers for the rank transformed tests are quite high rather than powers for the parametric tests.

Parametric Study on the Joint Strength of Unidirectional and Fabric Hybrid Laminate (일방향-평직 복합재 혼합 적층판의 기계적 체결부 강도에 관한 인자연구)

  • 안현수;신소영;권진회;최진호;이상관;양승운
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.9-12
    • /
    • 2002
  • A parametric study has been conducted to investigate the effect of the geometry on the strength of an unidirectional and fabric hybrid laminated composite joint. Tests are conducted for the specimens with nine different edge-to-hole diameter or width-to-hole diameter ratios. For the finite element analysis, the characteristic length method is used, and the tests for determining the characteristic length are performed additionally. Nonlinear contact problem between the pin and laminate is modeled by the gap element in MSC/NASTRAN. Tsai-Wu failure criteria is applied to the stress on the characteristic curve. The finite element and experimental results shows good agreement in strength of composite joint. Results of the parametric study shows the effect of the geometry is remarkable in the specimens with width-to-hole diameter ratio less than 2.8 and edge-to-hole diameter ratio less than 1.4.

  • PDF

Two tests using more assumptions but lower power

  • Sang Kyu Lee;Hyoung-Moon Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.109-117
    • /
    • 2023
  • Intuitively, a test with more assumptions has greater power than a test with fewer assumptions. This kind of examples are abundant in the nonparametric tests vs corresponding parametric ones. In general, the nonparametric tests are less efficient in terms of asymptotic relative efficiency (ARE) compared to corresponding parametric tests (Daniel, 1990). However, this is not always true. To test equal means under independent normal samples, the usual test involves using the t-distribution with the pooled estimator of the common variance. Adding the assumption of equal sample size, we may derive another test. In this case, two tests using more assumptions were performed for univariate (multivariate) cases. For these examples, it was found that the power function of a test with more assumptions is less than or equal to that of a test with fewer assumptions. This finding can be used as an expository example in master's mathematical statistics courses.

Optimization of a twin-skeg container vessel by parametric design and CFD simulations

  • Chen, Jingpu;Wei, Jinfang;Jiang, Wujie
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.466-474
    • /
    • 2016
  • The model tests results for the original lines of an 10000TEU container vessel show that the delivered power is higher and could not satisfy the requirement of energy saving effects and design targets. In this paper, the lines optimization of the 10,000 twin-skeg container vessel was carried out by parametric modeling and CFD simulations. At first, the CFD methods for twin-skeg hull form were validated by the comparison with the experimental results. Then more than one hundred parameters were adopted for the establishment of the fully parametric model. Based on the parametric model of the twin-skeg container vessel, the preliminary optimization was carried out by tight coupling of FRIENDSHIP-FRAMEWORK with potential flow of SHIPFLOW. Then several important parameters related to the after part of twin-skeg vessel were investigated by viscous flow computation. The final optimized variant PM11, which the total resistance was reduced by about 8.3% in model scale, is obtained within the constraints of general arrangement. And the model tests for variant PM11 was carried out in CSSRC, which shows that the resistance of optimized variant PM11 is decreased by about 8.6%.