DOI QR코드

DOI QR Code

Rank Transformation Technique in a Two-stage Two-level Balanced Nested Design

이단계 이수준 균형지분모형의 순위변환 기법연구

  • Choi Young-Hun (Department of Information and Statistics, Hanshin University)
  • 최영훈 (한신대학교 정보통계학과)
  • Published : 2006.03.01

Abstract

In a two-stage two-level balanced nested design, type I error rates for the parametric tests and the rank transformed tests for the main effects and the nested effects are in overall similar to each other. Furthermore, powers for the rank transformed statistic for the main effects and the nested effects in a two-stage two-level balanced nested design are generally superior to powers for the parametric statistic When the effect size and the sample size are increased, we can find that powers increase for the parametric statistic and the rank transformed statistic are dramatically improved. Especially for the case of the fixed effects in the asymmetric distributions such as an exponential distribution, powers for the rank transformed tests are quite high rather than powers for the parametric tests.

이단계 이수준 균형지분모형에서 주효과 및 지분효과를 검정하기 위한 모수적 검정과 순위변환을 이용한 검정은 전반적으로 제1종 오류율이 상당히 유사하며, 주효과 및 지분효과를 검정하기 위한 순위변환통계량의 검정력은 모수적 통계량의 검정력보다 상대적으로 뛰어난 수준임을 보여준다. 한편 효과의 크기와 표본의 크기를 증가시킬수록 모수적 통계량과 순위변환 통계량의 검정력 증가량의 크기는 현저하게 향상되며, 특히 지수분포와 같은 비대칭분포하에서 모든 인자가 고정일때 순위변환 통계량의 검정력이 모수적 통계량의 검정력보다 월등히 높은 수준임을 나타낸다.

Keywords

References

  1. Akritas, M. G. and Arnold, S. F. (1994). Fully nonparametric hypotheses for factorial designs, Journal of the American Statistical Association, 89, 336-343 https://doi.org/10.2307/2291230
  2. Choi, Y. H. (1998). A study of the power of the rank transform test in a 2(3) factorial experiment, Communications in Statistics, 27, 251-266
  3. Conover, W. J. and Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics, The American Statistician, 35, 124-128 https://doi.org/10.2307/2683975
  4. Fabian, V. (1991). On the problem of interactions in the analysis of variance, Journal of the American Statistical Association, 86, 362-374 https://doi.org/10.2307/2290576
  5. Gorman, J. O. and Akritas, M. G. (2001). Nonparametric models and methods for designs with dependent censored data, Biometrics, 57, 88-95 https://doi.org/10.1111/j.0006-341X.2001.00088.x
  6. Hora, S. C. and Conover, W. J. (1984). The F statistic in the two-way layout with rank score transformed data, Journal of the American Statistical Association, 79, 668-673 https://doi.org/10.2307/2288415
  7. Hora, S. C. and Iman, R. L. (1988). Asymptotic relative efficiencies of the rank transformation procedure in randomized complete block design, Journal of the American Statistical Association, 83, 462-470 https://doi.org/10.2307/2288863
  8. Kepner, J. L. and Robinson, D. H. (1988). Nonparametric methods for detecting treatment effects in repeated-measures designs, Journal of the American Statistical Association, 83, 456-461 https://doi.org/10.2307/2288862
  9. Thompson, G, L. (1991), A note on the rank transform for interactions, Biometrika, 78, 697-701 https://doi.org/10.1093/biomet/78.3.697