DOI QR코드

DOI QR Code

Resampling Methods on Frequency Domains for Time Series

시계열분석을 위한 주파수 공간상에서의 재표집 기법

  • Yeo In-Kwon (Division of Mathematics and Statistics, Sookmyung Women's University) ;
  • Yoon Wha-Hyung (Department of Statistics, Seoul National University) ;
  • Cho Sin-Sup (Department of Statistics, Seoul National University)
  • 여인권 (숙명여자대학교 이과대학 수학통계학부) ;
  • 윤화형 (서울대학교 자연과학대학 통계학과) ;
  • 조신섭 (서울대학교 자연과학대학 통계학과)
  • Published : 2006.03.01

Abstract

This paper presents the resampling method for time series data in the frequency domain obtained by using discrete cosine transforms(DCT) The advantage of the proposed method is to generate bootstrap samples in time domain comparing with existing bootstrapping method. When time series are stationary, statistical properties of DCT coefficients are investigated and provide the verification of the proposed procedure.

이 논문에서는 이산코사인변환을 이용하여 시계열자료를 주파수 공간으로 변환시킨 후, 이산코사인변환 계수를 재표집하여 시계열자료에 대한 재표본을 추출하는 방법에 대해 알아본다. 기존 주파수 공간상에서의 붓스트랩 방법은 스펙트럼평균(spectral mean)에 대한 추론을 하기위해 사용되지만 제안하고자 하는 방법은 시간영역상에서의 시계열자료에 얻을 수 있다는 것이 가장 큰 차이점이다. 이 논문에서는 정상시계열의 경우, 이산코사인변환 계수의 통계적 성질을 유도하고 이 성질을 이용하여 붓스트랩하는 과정을 설명한다. 모의 실험을 통해 기존에 사용되고 있는 방법과 성능을 비교하였다.

Keywords

References

  1. Buhlmann, P. (1997). Sieve bootstrap for time series, Bernoulli 3, 123-148 https://doi.org/10.2307/3318584
  2. Buhlmann, P. (1998). Sieve bootstrap for smoothing in non-stationary time series. The Annals of Statistics 26, 48-83 https://doi.org/10.1214/aos/1030563978
  3. Buhlmann, P. and Kunsch, H. R. (1999). Block length selection in the bootstrap for time series, Computational Statistics and Data Analysis 31, 295-310 https://doi.org/10.1016/S0167-9473(99)00014-6
  4. Choi, E. and Hall, P. (2000). Bootstrap confidence regions computed from autoregressions of arbitrary order, Journal of the Royal Statistical Society, Series B 62, 461-477 https://doi.org/10.1111/1467-9868.00244
  5. Dahlhaus, R. and Janas, D. (1996). A frequency domain bootstrap for ratio statistics in time series analysis, The Annals of Statistics 24, 1934-1963 https://doi.org/10.1214/aos/1069362304
  6. Efron, B (1979). Bootstrap methods: another look at the jackknife (with discussion), The Annals of Statistics 7, 1-26 https://doi.org/10.1214/aos/1176344552
  7. Franke, J. and HardIe, W. (1992). On bootstrapping kernel spectral estimates, The Annals of Statistics 20, 121-145 https://doi.org/10.1214/aos/1176348515
  8. Hall, P. (1985). Resampling a coverage pattern, Stochastic Processes and Their Applications 20, 231-246 https://doi.org/10.1016/0304-4149(85)90212-1
  9. Kunsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations, The Annals of Statistics 17, 1217-1241 https://doi.org/10.1214/aos/1176347265
  10. Lahiri, S. N. (2003). Resampling methods for dependent data, Springer, New York
  11. Nordgaard, A. (1992). Resampling a stochastic process using a bootstrap approach, Bootstrapping and Related Techniques, Lecture Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, p.376
  12. Paparoditis, E. and Politis, D. N. (1999). The local bootstrap for periodogram statistics, Journal of Time Series Analysis 20, 193-222 https://doi.org/10.1111/1467-9892.00133
  13. Singh, K. (1981). On the asymptotic accuracy of the Efron's boostrap, The Annals of Statsitics 9. 1187-1195 https://doi.org/10.1214/aos/1176345636

Cited by

  1. A Unit Root Test via a Discrete Cosine Transform vol.24, pp.1, 2011, https://doi.org/10.5351/KJAS.2011.24.1.035