• Title/Summary/Keyword: parametric function

Search Result 617, Processing Time 0.028 seconds

Image Segmentation Based on Fusion of Range and Intensity Images (거리영상과 밝기영상의 fusion을 이용한 영상분할)

  • Chang, In-Su;Park, Rae-Hong
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.95-103
    • /
    • 1998
  • This paper proposes an image segmentation algorithm based on fusion of range and intensity images. Based on Bayesian theory, a priori knowledge is encoded by the Markov random field (MRF). A maximum a posteriori (MAP) estimator is constructed using the features extracted from range and intensity images. Objects are approximated by local planar surfaces in range images, and the parametric space is constructed with the surface parameters estimated pixelwise. In intensity images the ${\alpha}$-trimmed variance constructs the intensity feature. An image is segmented by optimizing the MAP estimator that is constructed using a likelihood function based on edge information. Computer simulation results shw that the proposed fusion algorithm effectively segments the images independentl of shadow, noise, and light-blurring.

  • PDF

Transient Response Analysis of a Lumped Mass System Using Sensitivity Method in Time Domain (시간영역 민감도 방법을 이용한 집중 질량 구조물의 천이응답 해석)

  • 백문열;기창두
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.217-223
    • /
    • 1997
  • This paper deals with the basic concepts of sensitivity analysis in a time domain for the transient response of a lumped mass system. Sensitivity analysis methods in thme domain for determining the effects of parameter changes on the response of a dynamic system by external excitation are presented. The parametric sensitivity of a lumped mass system in time domain can be investigated using different types of sensitivity functions, including first order standard and percentage sensitivity functions. These sensitivity functions are determined as a function of partial derivatives of system variables taken with respect to system parameters. In addition, we compared the results of the analytical method by direct method and those of numerical methods.

  • PDF

Human Limbs Modeling from 3D Scan Data (3차원 스캔 데이터로부터의 인체 팔, 다리 형상 복원)

  • Hyeon, Dae-Eun;Yun, Seung-Hyeon;Kim, Myeong-Su
    • Journal of the Korea Computer Graphics Society
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2002
  • This paper presents a new approach for modeling human limbs shape from 3D scan data. Based on the cylindrical structure of limbs, the overall shape is approximated with a set of ellipsoids through ellipsoid fitting and interpolation of fit-ellipsoids. Then, the smooth domain surface representing the coarse shape is generated as the envelope surface of ellipsoidal sweep, and the fine details are reconstructed by constructing parametric displacement function on the domain surface. For fast calculation, the envelope surface is approximated with ellipse sweep surface, and points on the reconstructed surface are mapped onto the corresponding ellipsoid. We demonstrate the effectiveness of our approach for skeleton-driven body deformation.

  • PDF

Design of Optimized Pattern Classifier for Discrimination of Precipitation and Non-precipitation Event (강수 및 비 강수 사례 판별을 위한 최적화된 패턴 분류기 설계)

  • Song, Chan-Seok;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1337-1346
    • /
    • 2015
  • In this paper, pattern classifier is designed to classify precipitation and non-precipitation events from weather radar data. The proposed classifier is based on Fuzzy Neural Network(FNN) and consists of three FNNs which operate in parallel. In the proposed network, the connection weights of the consequent part of fuzzy rules are expressed as two polynomial types such as constant or linear polynomial function, and their coefficients are learned by using Least Square Estimation(LSE). In addition, parametric as well as structural factors of the proposed classifier are optimized through Differential Evolution(DE) algorithm. After event classification between precipitation and non-precipitation echo, non-precipitation event is to get rid of all echo, while precipitation event including non-precipitation echo is to get rid of non-precipitation echo by classifier that is also based on Fuzzy Neural Network. Weather radar data obtained from meteorological office is to analysis and discuss performance of the proposed event and echo patter classifier, result of echo pattern classifier compare to QC(Quality Control) data obtained from meteorological office.

Modeling the Influence of Gas Pressure on Droplet Impact Using a Coupled Gas/liquid Boundary Element Method

  • Park, Hong-Bok;Yoon, Sam S.;Jepsen Richard A.;Heister Stephen D.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • An inviscid axisymmetric model capable of predicting droplet bouncing and the detailed pre-impact motion, influenced by the ambient pressure, has been developed using boundary element method (BEM). Because most droplet impact simulations of previous studies assumed that a droplet was already in contact with the impacting substrate at the simulation start, the previous simulations could not accurately describe the effect of the gas compressed between a failing droplet and the impacting substrate. To properly account for the surrounding gas effect, an effect is made to release a droplet from a certain height. High gas pressures are computationally observed in the region between the droplet and the impact surface at instances just prior to impact. The current simulation shows that the droplet retains its spherical shape when the surface tension energy is dominant over the dissipative energy. When increasing the Weber number, the droplet surface structure is highly deformed due to the appearance of the capillary waves and, consequently, a pyramidal surface structure is formed; this phenomenon was verified with our experiment. Parametric studies using our model include the pre-impact behavior which varies as a function of the Weber number and the surrounding gas pressure.

  • PDF

Disk-averaged Spectra Simulation of Earth-like Exoplanets with Ray-tracing Method

  • Ryu, Dong-Ok;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • The understanding spectral characterization of possible earth-like extra solar planets has generated wide interested in astronomy and space science. The technical central issue in observation of exoplanet is deconvolution of the temporally and disk-averaged spectra of the exoplanets. The earth model based on atmospheric radiative transfer method has been studied in recent years for solutions of characterization of earthlike exoplanet. In this study, we report on the current progress of the new method of 3D earth model as a habitable exoplanet. The computational model has 3 components 1) the sun model, 2) an integrated earth BRDF (Bi-directional Reflectance Distribution Function) model (Atmosphere, Land and Ocean) and 3) instrument model combined in ray tracing computation. The ray characteristics such as radiative power and direction are altered as they experience reflection, refraction, transmission, absorption and scattering from encountering with each all of optical surfaces. The Land BRDF characteristics are defined by the semi-empirical "parametric-kernel-method" from POLDER missions from CNES. The ocean BRDF is defined for sea-ice cap structure and for the sea water optical model, considering sun-glint scattering. The input cloud-free atmosphere model consists of 1 layers with vertical profiles of absorption and aerosol scattering combined Rayleigh scattering and its input characteristics using the NEWS product in NASA data and spectral SMARTS from NREL and 6SV from Vermote E. The trial simulation runs result in phase dependent disk-averaged spectra and light-curves of a virtual exoplanet using 3D earth model.

  • PDF

Determination of Diesel Sprays Characteristics in Real Engine In-Cylinder air Density and Pressure Conditions

  • Payri Raul;Salvador F. J.;Gimeno J;Soare V.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2040-2052
    • /
    • 2005
  • The present paper centers on the establishment of a quantified relationship between the macroscopic visual parameters of a Diesel spray and its most influential factors. The factors considered are the ambient gas density, as an external condition relative to the injection system, and nozzle hole diameter and injection pressure as internal ones. The main purpose of this work is to validate and extend the different correlations available in the literature to the present state of the Diesel engine, i.e. high injection pressure, small nozzle holes, severe cavitating conditions, etc. Five mono-orifice, axi-symmetrical nozzles with different diameters have been studied in two different test rigs from which one can reproduce solely the real engine in-cylinder air density, and the other, both the density and the pressure. A parametric study was carried out and it enabled the spray tip penetration to be expressed as a function of nozzle hole diameter, injection pressure and environment gas density. The temporal synchronization of the penetration and injection rate data revealed a possible explanation for the discontinuity observed as well by other authors in the spray's penetration law. The experimental results obtained from both test rigs have shown good agreement with the theoretical analysis. There have been observed small but consistent differences between the two test rigs regarding the spray penetration and cone angle, and thus an analysis of the possible causes for these differences has also been included.

Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder (구형 산소용기 내 표면균열에 대한 수치파괴역학 평가)

  • Cho, Doo-Ho;Kim, Jong-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Han, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.

Optimal Parametric Design of Coil Gun to Improve Muzzle Velocity (피투사체 속도 향상을 위한 코일건의 기구 변수 최적 설계)

  • Lee, Su-Jeong;Lee, Ju Hee;Lee, Dong Yeon;Seo, TaeWon;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.408-412
    • /
    • 2014
  • An electromagnetic launching system presents a viable projectile propulsion alternative with low cost and minimal environmental drawbacks. A coil gun system propels a projectile using an electromagnetic force and the system is mainly employed in military weapon systems and space launch systems. In this paper, we perform optimization design to improve the muzzle velocity by analyzing the sensitivity. The muzzle velocity, which is the most important design function variable, is affected by design variables including the number of axial turns in the electromagnetic coil, number of radial turns in the electromagnetic coil, initial distance between the projectile and the coil, inner radius of the electromagnetic coil, and length of the projectile. An orthogonal arrays matrix is configured, and a finite element analysis is performed utilizing the commercial electromagnetic analysis software MAXWELL. The muzzle velocity of the optimal design is 62.4% greater than that of the initial design.

Reactor Neutron Noise Analysis using AR Spectral Estimation (AR 스펙트럼 추정법을 이용한 원자로 중성자 잡음 신호 해석)

  • Sim, Cheul-Muu;Hwang, Tae-Jin;Baik, Heung-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.83-91
    • /
    • 1997
  • A reactor vibration monitoring has been performed using neutron noise obtained from excore detectors for the safety operation, Traditionally, the spectral estimator based on Fourier analysis has been widely used in the noise analysis of the reactor system. If the bias is too severe, the resolution would not be adequate for a given application. One major motivation for the current interests in the parametric approach to spectral estimation is the apparent higher resolution achievable with these modern techniques. In considering an unbias, a consistency, an efficency, and a minimum lower bound of the statictic estimation, an AR model is appropriate for noise spectral estimation with sharp peaks but not deep valley. In order to select an appropriate model order, the lag value of autocorrleaton function is applied. Burg method to trace the vibration mode of RPV internal is the most sucuessful.

  • PDF