• Title/Summary/Keyword: parametric function

Search Result 617, Processing Time 0.029 seconds

Shear Strength of Fine Sand -Curvature Characteristics of Failure Envelope and Stress Parameter- (가는 모래의 전단강도 -파괴포락선의 곡률특성과 상태정수에 관하여-)

  • Yoon, Yeo Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.195-202
    • /
    • 1994
  • In this research, a lot of triaxial test results (CID) are analyzed to study the curvature characteristics of failure envelope of sand and parametric relationship between shear strength and state parameter by Been and Jefferies. In the conventional triaxial tests, correction for the change of sectional area of a sample and for membrane influence is essential especially in order to determine critical state (or steady state) condition more correctly. Based on the test results, a model to express the shear strength of fine sand as a function of density and stress level is presented and curvature characteristics of shear failure envelope and parametric relationship between state parameter and shear strength parameters are evaluated.

  • PDF

A Study on the Prediction of Performance due to Cycle Simulation Model in Spark Ignition Engine (SI 기관에 있어서 사이클 시뮬레이션에 의한 성능예측에 관한 연구)

  • 한영출;이원일
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.91-101
    • /
    • 1986
  • Relations of each factor affected by emissions and the prediction of performance have been analyzed numerically by cycle simulation in the Spark Ignition Engine. Through theoretical analysis and experiments, the results are obtained as below. The calculated results and the experimental ones are almost highly agreeable on cycle simulation model, exhaust gas analysis and efficiency for processes in cylinder. Therefore this model is proved appropriate and can be useful for optimum design of Spark Ignition Engines on parametric studies. It is reaffirmed that the Wiebe's function is suitable for predicting Combustion Ration in Spark Ignition Engines. On parametric studies, it is found that optimum conditions whose density of emissions are lower and efficiency is maximum within propriety value are crankangle ATDC $15^\circ-20^\circ$, 2400 rpm. A/F=16 in this experiment.

  • PDF

Comparison of Spectral Analysis Methods of Prosthetic Heart Valve Sound (인공판막의 판막음 스펙트럼 분석방법 비교)

  • Lee, H.J.;Kim, S.H.;Chang, B.C.;Tack, G.;Cho, B.K.;Yoo, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.402-405
    • /
    • 1997
  • The analysis of heart sounds is a noninvasive diagnostic method useful to diagnose heart valve function. In this paper we compared the ability of spectral analysis method for prosthetic heart valve sounds. Phonocardiograms of prosthetic heart valve were analyzed in order to derive frequency domain feature suitable for the classification of the valve state. The FFT-based methods did not provide sufficient frequency resolution to completely characterize the spectrum of prosthetic heart valve sounds. A high resolution parametric methods were shown to give superior frequency resolution. In parametric methods, all methods provide a 1st & 2nd & 3rd frequency component. But Shank method provided a most dominant frequency peak.

  • PDF

Kernel Regression with Correlation Coefficient Weighted Distance (상관계수 가중법을 이용한 커널회귀 방법)

  • Shin, Ho-Cheol;Park, Moon-Ghu;Lee, Jae-Yong;You, Skin
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.588-590
    • /
    • 2006
  • Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection) have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system is the model giving an estimate of the true process parameter value against individual measurements. This model gives process parameter estimate calculated as a function of other plant measurements which can be used to identify small sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement of auto-associative kernel regression by introducing a correlation coefficient weighting on kernel distances. The prediction performance of the developed method is compared with conventional auto-associative kernel regression.

  • PDF

Controcller design using parametric neural networks

  • HashemiNejad, M.;Murata, J.;Banihabib, M.E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.616-621
    • /
    • 1994
  • Neural Networks (henceforth NNs, with adjective "artificial" implied) has been used in the field of control however, has a long way to fit to its abilities. One of the best ways to aid it is "supporting it with the knowledge about the linear classical control theory". In this regard we hive developed two kinds of parametric activation function and then used them in both identification and control strategy. Then using a nonlinear tank system we are to test its capabilities. The simulation results for the identification phase is promising. phase is promising.

  • PDF

Adaptive B-spline volume representation of measured BRDF data for photorealistic rendering

  • Park, Hyungjun;Lee, Joo-Haeng
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Measured bidirectional reflectance distribution function (BRDF) data have been used to represent complex interaction between lights and surface materials for photorealistic rendering. However, their massive size makes it hard to adopt them in practical rendering applications. In this paper, we propose an adaptive method for B-spline volume representation of measured BRDF data. It basically performs approximate B-spline volume lofting, which decomposes the problem into three sub-problems of multiple B-spline curve fitting along u-, v-, and w-parametric directions. Especially, it makes the efficient use of knots in the multiple B-spline curve fitting and thereby accomplishes adaptive knot placement along each parametric direction of a resulting B-spline volume. The proposed method is quite useful to realize efficient data reduction while smoothing out the noises and keeping the overall features of BRDF data well. By applying the B-spline volume models of real materials for rendering, we show that the B-spline volume models are effective in preserving the features of material appearance and are suitable for representing BRDF data.

Robust Control of Uncertainty Systems by Fuzzy Auto-Tuning (Fuzzy 자동동조에 의한 불확실성 공정의 견실제어)

  • Ryu, Y.G.;Choi, J.N.;Kim, J.K.;Mo, Y.S.;Hwang, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.504-506
    • /
    • 1999
  • In this paper, we propose a method which control parametric uncertainty systems using PID controller by fuzzy auto tuning. We get the error and the error change rate of plant output correspond to the initial value of parameter using the Ziegler-Nickols tuning and determine the new proportional gain$(K_p)$ and the integral time $(T_i)$ from fuzzy tuner by the error and error change rate of plant output as a membership function of fuzzy theory. The Fuzzy Auto-tuning algorithm for PID controller operate to adapt variable parameter of plant in parametric uncertainty systems. It is shown this method considerably improve the transient response at computer simulation.

  • PDF

Automatic 3-D Modeling System for Cooling Fans Based on a Solid Modeler (솔리드 모델러 기반의 냉각탑용 축류팬 자동 설계시스템)

  • 이광일;강재관;김원일;이윤경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.141-144
    • /
    • 1997
  • This paper presents design automation system using API and parametric modeling of solid modeler, which is applied on axial fans for cooling towers. The design data including chord length and twist angle according to the fan length are given by design program, and API functions are applied to automate the modeling and assembly process of fan blade. The boss to connect fan and motor is designed with parametric design function provided by UG so as to be flexibly changed by the value of design parameters. The process of generating 2-D drafting for parts and an assembly is also automated. With developed system, the modeling time is reduced to 5 minutes even with unskilled operators.

  • PDF

Parametric Study of Subscale Ejector for Pressure Recovery of Chemical Lasers (화학레이저 압력회복을 위한 축소형 이젝터의 성능변수)

  • Kim Sehoon;Kim Hyungjun;Kwon Sejin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.135-138
    • /
    • 2002
  • High-speed ejection of burnt gases from the resonator cavity is essential for performance optimization of the chemical laser system. Additionally, to maintain the population of lasing species at a level for maximum optical power, the pressure within the cavity must be of order of 10 torr. In the present study, a small-scale ejector was designed and built for parametric study of its performance. High-pressure air was used as a motive gas. Measurements include schlieren visualization and pressure distribution trace near the ejector nozzle and along the diffuser downstream of the ejector. preliminary tests showed performance of the ejector is a function of parameters including mass flow rate and stagnation pressure of the motive gas, ejector nozzle area ratio, throat area of the diffuser downstream of the ejector.

  • PDF

Robust Controller Design of Nuclear Power Reactor by Parametric Method

  • Yoon-Joon Lee;Man-Gyun Na
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.436-444
    • /
    • 2002
  • The robust controller for the nuclear reactor power control system is designed. Since the reactor model is not exact, it is necessary to design the robust controller that can work in the real situations of perturbations. The reactor model is described in the form of transfer function and the bound of each coefficient is determined to set up the linear interval system. By the Kharitonov and the edge theorem, a frequency based design template is made and applied to the determination of the controller. The controller designed by this method is simpler than that obtained by the H$_{\infty}$. Although the controller is designed with the basis of high power, it could be used even at low power.n at low power.