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Kernel Regression with Correlation Coefficient Weighted Distance
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Abstract - Recently, many on-line approaches to instrument channel surveillance (drift monitoring and fault detection)
have been reported worldwide. On-line monitoring (OLM) method evaluates instrument channel performance by assessing
its consistency with other plant indications through parametric or non-parametric models. The heart of an OLM system
is the mode! giving an estimate of the true process parameter value against individual measurements. This model gives
process parameter estimate calculated as a function of other plant measurements which can be used to identify small
sensor drifts that would require the sensor to be manually calibrated or replaced. This paper describes an improvement
of auto-associative kernel regression by introducing a correlation coefficient weighting on kernel distances. The prediction
performance of the developed method is compared with conventiona! auto—associative kernel regression.
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1. Introduction

Recently, many on-line approaches to instrument
channel surveillance {(drift monitoring and fault detection)
have been reported worldwide. On-line monitoring (OLM)
method evaluates

instrument channel performance by

assessing its consistency with other plant indications
through parametric or non-parametric models [1].

The heart of an OLM system is the model giving an
estimate of the true process parameter value against
This model gives
parameter estimate calculated as a function of other plant
measurements which can be used to identify small sensor

individual measurements. process

drifts that would require the
calibrated or replaced.

This paper
auto-associative kernel regression (AAKR) by introducing

sensor to be manually

describes an improvement of
a correlation coefficient weighting on kernel distances. The
prediction performance of the developed method is
compared  with auto-associative

conventional kernel

regression.

2. Methods and Results

2.1 Auto-associative Kernel Regression
Sensor drift monitoring is based on the empirical models
developed with historical measurement data to generate
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reference signals. The reference signal values are
compared to the sensor measurements and the differences,
called monitored to  detect

degradation. To auto-associative

residuals, are sensor

explain the kernel
regression, consider the following illustrative description of
Hines [2].

The exemplar or memory vectors used to develop the

X

empirical model are stored in a matrix X, where i/ is
the ith observation of the Jjth variable. For "m
observations of p process variables, this matrix can be
written as:
Xl,l Xl,: Xl,p
x: X”I /\:2.2 Xl,p
Xn,,_,.l Xn,,.,: e Xnm,p (1)

Using this format, a query vector is represented by a
Ixp vector of process variable measurements: x.

x=[x x,. xp] @

The corrected input is calculated as a weighted average
of historical, error-free observations termed memory

vectors (Xi). The mathematical framework of this
modeling technique is composed of three basic steps. First,
the distance between a query vector and each of the
memory vectors is computed. There are several distance
functions that may be used, but the most commonly used

function is the Euclidean distance, whose equation for the
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ith memory vector is as follows:

d(X, :fp X —x)
(X, %) Z,-:( ) ®

For a single query vector, this calculation is repeated
for each of the nm memory vectors, resulting in an nmxl
matrix d. Next, distances are
transformed to similarity measures used to determine
weights by evaluating the Gaussian kernel, expressed by:

of distances: these

w=K_(d)= ;exp(—dz /o%)
J270? @
where o0 is the kernel bandwidth, w are the weights for
the n» memory vectors.
Finally, these weights are combined with the memory
vectors to make predictions according to:

’ezzm:(WiXi)/szi )
i=1 i=1

The kernel bandwidth ¢’ should be optimized for the
trades-off of accuracy and generality of the signal.

22 AAKR with Correlation Coefficient Weighting

o’ is the bandwidth of the kernel which controls how
wide the influencing measurements are spread around a
query point. Bandwidth can also control the smoothness or
roughness of a density estimate. Increasing the kernel
width 6 means further away points get an opportunity
to influence the query point. [3] In this paper, an improved
performance of the AAKR method with
weighting s

correlation

coefficient view  of

demonstrated in
auto-sensitivity and accuracy.
Let’s recall the normalized correlation coefficient vector

assessing the linear dependence between random variables

as !
g o2 o L oo,
pe| 2 22 2y Tay
01 Oj02 OO0 i=1 0,01 R (5))
where j is the index of the number of redundant
Sensors.
The  correlation  coefficient  assesses the linear

dependence between two random variables. It is equal to
the covariance divided by the largest possible covariance
and has a -1<pw<1. A negative correlation
coefficient simply means the relationship is inverse, or as

one goes up, the other tends to go down.

range

The correlation coefficient weighting on distance metric
is performed as follows :

drX,0= 3K, ~x)xlp,|

(M

This improvement makes the variables with close linear
relationship have a long range of memory vectors.

2.3 Performance Comparison

2.3.1 Accuracy

The accuracy metric is simply defined as the mean
squared error (MSE) between the model’s predictions and
the target values. It is important to note that this metric
compares the un-faulted, or error corrected, predictions
with the target, or error free, data. The equation for a
single variable is simply [2]:

1, 2
A:— X, —X.

A

X

where N is the number of test observations, % is the

model prediction of the ith test observation, Xiis the ith
observation of the test data. Figure 1 shows the improved
accuracy of the correlation coefficient weighted AAKR
over the conventional AAKR.
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Figure 1. Comparison of accuracy of the correlation
coefficient weighted AAKR with conventional AAKR.

232 Auto-Sensitivity
The auto sensitivity
model’s ability to make correct sensor predictions when

is a measure of an empirical

the respective sensor value is incorrect due to some sort

of fault. Therefore, this metric involves the following

I\

values: the un-faulted prediction xi, the drifted prediction

" the un-faulted input variable x, the drifted input

*® and the index of the artificially drifted variable k.
Using these definitions, the auto sensitivity for sensor k is
given by:

1 N A[] 3
S ;T X, Nﬁ IS dri)
4 NZ:‘I Ho=Xy |/|xkiﬁ =X . 1)

An auto sensitivity value of 0 is desirable and means
the model is impervious to the input fault. The auto
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sensitivity metric is of great importance to OLM. If a
model’s auto sensitivity is 1, then the model’s prediction
follows the fault, resulting in a residual of zero, and the
fault cannot be detected. If a model’s auto sensitivity value
is non-zero, its prediction will underestimate the size of
the sensor fault and the OLM system drift limits may
need to be adjusted to reflect this fact. Figure 2 shows
the improved performance of the correlation coefficient
weighted AAKR over the conventional AAKR.

Auto-sensitivity Performance Metric
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Figure 2. Comparison of auto-sensitivity of the
correlation coefficient weighted AAKR with conventional
AAKR.

The plots presented in Fig. 3 and 4. Fig. 2 shows the
trend of measured plant variables. There is a drifting
signal on the top of Fig. 3 since other variables represent
the plant is being operated in a steady state. Figure 4
shows the capability of providing the reference signal
predicted by the correlation coefficient weighted AAKR to
identify the sensor drift.

3. Conclusion

This paper has presented an improvement in sensor
drift monitoring method using the correlation coefficient
weighted AAKR. The performance is demonstrated in view
of its accuracy and sensitivity to identify the sensor drift.
The further work would be assurance of the theoretical
foundations.
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Figure 3. Trend of measured plant variables including a
drifting signal
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Figure 4. Signal predicted by the correlation coefficient
weighted AAKR identifying the sensor drift
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