• 제목/요약/키워드: parametric equations

검색결과 557건 처리시간 0.028초

Non-linear study of mode II delamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.263-271
    • /
    • 2017
  • A theoretical study was carried-out of mode II delamination fracture behavior of the End Loaded Split (ELS) functionally graded beam configuration with considering the material non-linearity. The mechanical response of ELS was modeled analytically by using a power-law stress-strain relation. It was assumed that the material is functionally graded transversally to the beam. The non-linear fracture was investigated by using the J-integral approach. Equations were derived for the crack arm curvature and zero axes coordinate that are needed for the J-integral solution. The analysis developed is valid for a delamination crack located arbitrary along the beam height. The J-integral solution was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, non-linear material behavior and crack location on the fracture were evaluated. The solution derived is suitable for parametric analyses of non-linear fracture. The results obtained can be used for optimization of functionally graded beams with respect to their mode II fracture performance. Also, such simplified analytical models contribute for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

터보챠져 저어널베어링의 설계에 관한 매개변수 연구 (Parametric Study on the Design of Turbocharger Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제23권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Turbocharger bearings are under the circumstance of high temperature, moreover rotated at high speed. It is necessary to be designed to overcome the high temperature. So the type of oil inlet port, the inlet oil temperature and the sort of engine oil should be designed, controlled and selected carefully in order to reduce the bearing inside temperature. Therefore, in this study, the effects of the type of inlet oil port, inlet temperature and the sort of engine oil on the performance of a turbocharger bearing are to be investigated. It is found that the type of oil inlet ports, the control of inlet oil temperature and the selection of engine oil type play important roles in determining the temperature and pressure, then the friction and load of a turbocharger journal bearing at high speed operation.

PARSEC 함수를 이용한 헤어포일의 공력 형상 설계 연구 (A STUDY ON THE AERODYNAMIC SHAPE DESIGN WITH THE PARSEC FUNCTION)

  • 이재훈;정경진;권장혁;안중기
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.88-91
    • /
    • 2007
  • In the shape design optimization of an airfoil, the shape function has been used to find the optimal airfoil shape for given conditions. The parameters determining the airfoil shape are used in the shape design optimization as design variables. However, they usually don't have physical meaning. The PARSEC (Parametric Shapes) function is a recently proposed shape function and its parameters have the physical meaning. In this study the usefulness of the PARSEC is tested for the RAE2822 airfoil in the transonic flow region to reduce the shock strength and the result is compared with Hicks-Henne function. The optimized airfoils reduce the shock strength and they show similar result.

  • PDF

사각채널 내 고 Pr 수의 혼합대류 볼텍스 유동에 관한 3차원 수치적 연구 (Three-Dimensional Numerical Study on Mixed Convective Vortex Flow in Rectangular Channels at High Prandtl Number)

  • 박일룡;배대석
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.29-30
    • /
    • 2005
  • A three-dimensional numerical calculation has been performed to investigate mixed convective vortex flow in rectangular channels(width/height=4) with the upper part cooled and the lower part heated uniformly. In this study, the Prandtl number was 909, the Reynolds number was varied from 0 to $9.6{\times}10^{-2}$ and the Rayleigh number from $10^3$ to $5{\times}10^4$. The governing equations were discretized using the finite volume method. From a parametric study, velocity and temperature distributions were obtained and discussed. It is found that vortex flow of mixed convection in rectangular channels can be classified into three flow patterns which depend on Reynolds and Rayleigh numbers, and the regular vortex structure disappears around Rayleigh number $5{\times}10^4$.

  • PDF

自然形 太陽熱暖房裝置 에 관한 硏究 (A Study on Natural Solar Heating System)

  • 박희용
    • 대한기계학회논문집
    • /
    • 제8권6호
    • /
    • pp.553-563
    • /
    • 1984
  • 본 연구에서는 선정한 난방모델에 대하여 열회로망을 만들어 각 구성성분에 대하여 에너지평형식을 세워 시뮬레이션 모델을 구하고 여기에 경계조건과 초기조건을 대입하여 수치해석으로 푼 결과를 실측치와 비교하였다. 또한 축열벽의 열용량변화, 통기구의 개폐, 통기구에 자동온도조절 홴(fan)의 설치, 야간단열의 설치 및 온실크기 의 변화 등이 온방온도에 미치는 영향을 규명하였다.

초고속 구동축의 지지 조건에 따른 안정성 분석 (Stability Analysis of High-speed Driveshafts under the Variation of the Support Conditions)

  • 신응수
    • 한국생산제조학회지
    • /
    • 제20권1호
    • /
    • pp.40-46
    • /
    • 2011
  • This paper is to investigate the effects of the asymmetrical support stiffness on the stability of a supercritical driveshaft with asymmetrical shaft stiffness and anisotropic bearings. The equations of motion is derived for a system including a rigid disk, a massless flexible asymmetric shaft, anisotropic bearings and a support beam. The Floquet theory is applied to perform the stability analysis with the variation of the support stiffness, the shaft asymmetry, the shaft damping and the shaft speed. The results show that the asymmetric support stiffness is closely related to the stability caused by primary resonance as well as the supercritical operation. First, the stiffness variation can stabilize the system around primary resonance by weakening the parametric resonance from the shaft asymmetry. Second, it also improve the stability characteristics at a supercritical operation when the support stiffness is not so high relative to the shaft stiffness.

Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory

  • Baseri, Vahid;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • 제21권4호
    • /
    • pp.883-919
    • /
    • 2016
  • In this research, buckling analysis of an embedded laminated composite plate is investigated. The elastic medium is simulated with spring constant of Winkler medium and shear layer. With considering higher order shear deformation theory (Reddy), the total potential energy of structure is calculated. Using Principle of Virtual Work, the constitutive equations are obtained. The analytical solution is performed in order to obtain the buckling loads. A detailed parametric study is conducted to elucidate the influences of the layer numbers, orientation angle of layers, geometrical parameters, elastic medium and type of load on the buckling load of the system. Results depict that the highest buckling load is related to the structure with angle-ply orientation type and with increasing the angle up to 45 degrees, the buckling load increases.

Predicting shear strength of SFRC slender beams without stirrups using an ANN model

  • Keskin, Riza S.O.
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.605-615
    • /
    • 2017
  • Shear failure of reinforced concrete (RC) beams is a major concern for structural engineers. It has been shown through various studies that the shear strength and ductility of RC beams can be improved by adding steel fibers to the concrete. An accurate model predicting the shear strength of steel fiber reinforced concrete (SFRC) beams will help SFRC to become widely used. An artificial neural network (ANN) model consisting of an input layer, a hidden layer of six neurons and an output layer was developed to predict the shear strength of SFRC slender beams without stirrups, where the input parameters are concrete compressive strength, tensile reinforcement ratio, shear span-to-depth ratio, effective depth, volume fraction of fibers, aspect ratio of fibers and fiber bond factor, and the output is an estimate of shear strength. It is shown that the model is superior to fourteen equations proposed by various researchers in predicting the shear strength of SFRC beams considered in this study and it is verified through a parametric study that the model has a good generalization capability.

Thermal stability analysis of temperature dependent inhomogeneous size-dependent nano-scale beams

  • Bensaid, Ismail;Bekhadda, Ahmed
    • Advances in materials Research
    • /
    • 제7권1호
    • /
    • pp.1-16
    • /
    • 2018
  • Thermal bifurcation buckling behavior of fully clamped Euler-Bernoulli nanobeam built of a through thickness functionally graded material is explored for the first time in the present paper. The variation of material properties of the FG nanobeam are graded along the thickness by a power-law form. Temperature dependency of the material constituents is also taken into consideration. Eringen's nonlocal elasticity model is employed to define the small-scale effects and long-range connections between the particles. The stability equations of the thermally induced FG nanobeam are derived via the principal of the minimum total potential energy and solved analytically for clamped boundary conditions, which lead for more accurate results. Moreover, the obtained buckling loads of FG nanobeam are validated with those existing works. Parametric studies are performed to examine the influences of various parameters such as power-law exponent, small scale effects and beam thickness on the critical thermal buckling load of the temperature-dependent FG nanobeams.

체적등의 구속조건하에서 단면곡선들로부터 B-spline Skinning을 사용한 곡면 디자인 (Surface Design Using B-spline Skinning of Cross-Sectional Curves under Volume Constraint)

  • 김형철
    • 한국CDE학회논문집
    • /
    • 제3권2호
    • /
    • pp.87-102
    • /
    • 1998
  • Given a sequence of cross-sectional curves, the skinning method generates a freeform surface that interpolates the given curves in that sequence. This thesis presents a construction method of a B-spline skinning surface that is fair and satisfies volume constraints. The fairness metric is based on the parametric energy functional of a surface. The degrees of freedom in surface control are closely related lo control points in the skinning direction. The algorithm fur finding a skinning surface consists of two step. In the first step, an initial fair surface is generated without volume constraints and one coordinate of each control point is fixed. In the second step, a final surface that meets all constraints is constucted by rearranging the other coordinates of each control point that defines the initial surface A variational Lagrange optimization method produces a system of nonlinear equations, which can be solved numerically. Moreover, the reparametrization of given sectional curves is important for the construction of a reasonable skinning surface. This thesis also presents an intuitive metric for reparametrization and gives some examples that are optimized with respect to that metric.

  • PDF