References
- Alibeigloo, A. and Madoliat, R. (2009), "Static analysis of cross-ply laminated plates with integrated surface piezoelectric layers using differential quadrature", Compos. Struct., 88(3), 342-351. https://doi.org/10.1016/j.compstruct.2008.04.018
- Chakrabarti, A. and Sheikh, A.H. (2006), "Dynamic instability of laminated sandwich plates using an efficient finite element model", Thin-Wall. Struct., 44(1), 57-68. https://doi.org/10.1016/j.tws.2005.09.003
- Chen, W., Xu, M. and Li, L. (2012), "A model of composite laminated Reddy plate based on new modified couple stress theory", Compos. Struct., 94(7), 2143-2155. https://doi.org/10.1016/j.compstruct.2012.02.009
- Chow, S.T., Liew, K.M. and Lam, K.Y. (1992), "Transverse vibration of symmetrically laminated rectangular composite plates", Compos. Struct., 20(4), 213-232. https://doi.org/10.1016/0263-8223(92)90027-A
- Dawe, D.J. and Yuan, W.X. (2001), "Overal and local buckling of sandwich plates with laminated faceplates, Part I: Analysis", Comput. Methods Appl. Mech. Eng., 190(40-41), 5197-5213. https://doi.org/10.1016/S0045-7825(01)00169-4
- Ferreira, A.J.M. (2005), "Analysis of composite plates using a layerwise theory and multiquadrics discretization", Mech. Adv. Mater. Struct., 12(2), 99-112. https://doi.org/10.1080/15376490490493952
- Ferreira, A.J.M. and Barbosa, J.T. (1970), "Buckling behaviour of composites and sandwich plates", J. Compos. Mater., 4, 20-34. https://doi.org/10.1177/002199837000400102
- Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higherorder shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. B: Eng., 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
- Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C. and Rodrigues, J.D. (2008), "Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter", Compos. Struct., 86(4), 328-343. https://doi.org/10.1016/j.compstruct.2008.07.025
- Ghorbanpour Arani, A., Kolahchi, R. and Vossough, H. (2012), "Buckling analysis and smart control of SLGS using elastically coupled PVDF nanoplate based on the nonlocal Mindlin plate theory", Physica B, 407(22), 4458-4461. https://doi.org/10.1016/j.physb.2012.07.046
- Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminatedelastic plates using a higher-order theory. Part II-Buckling and freevibration", Compos. Struct., 9(4), 259-277. https://doi.org/10.1016/0263-8223(88)90048-7
- Luong-Van, H., Nguyen-Thoi, T., Liu, G.R. and Phung-Van, P. (2014), "A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation", Eng. Anal. Bound. Elem., 42, 8-19. https://doi.org/10.1016/j.enganabound.2013.11.008
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012a), "A new trigonometric layerwise shear deformation theory for the finite element analysis of laminated composite and sandwich plates", Comput. Struct., 94-95, 45-53. https://doi.org/10.1016/j.compstruc.2011.12.003
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2012b), "A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates", Int. J. Solids Struct., 49(1), 43-53. https://doi.org/10.1016/j.ijsolstr.2011.09.008
- Matsunaga, H. (2000), "Vibration and stability of cross-ply laminatedcomposite plates according to a global higher-order plate theory", Compos. Struct., 48(4), 231-244. https://doi.org/10.1016/S0263-8223(99)00110-5
- Nguyen, T.N., Hui, D., Lee, J. and Nguyen-Xuan, H. (2015), "An efficient computational approach for sizedependent analysis of functionally graded nanoplates", Comput. Meth. Appl. Mech. Eng., 297, 191-218. https://doi.org/10.1016/j.cma.2015.07.021
- Nguyen, T.N., Thai, Ch.H. and Nguyen-Xuan, H. (2016), "On the general framework of high order shear deformation theories for laminated composite plate structures: A novel unified approach", Int. J. Mech. Sci., 110, 242-255. https://doi.org/10.1016/j.ijmecsci.2016.01.012
- Nguyen-Thoi, T., Luong-Van, H., Phung-Van, P., Rabczuk, T. and Tran-Trung, D. (2013), "Dynamic responses of composite plates on the Pasternak foundation subjected to a moving mass by a cell-based smoothed discrete shear gap (CS-FEM-DSG3) method", Int. J. Compos. Mater., 3, 19-27.
- Nguyen-Xuan, H., Thai, Ch.H. and Nguyen-Thoi, T. (2013), "Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory", Compos. Part B, 55, 558-574. https://doi.org/10.1016/j.compositesb.2013.06.044
- Nguyen-Xuan, H., Tran, L.V., Thai, Ch.H., Kulasegaram, S. and Bordas, S.P.A. (2014), "Isogeometric finite element analysis of functionally graded plates using a refined plate theory", Compos. Part B, 64, 222-234. https://doi.org/10.1016/j.compositesb.2014.04.001
- Pandit, M.K. Singh, B.N. and Sheikh, A.H. (2008a), "Buckling of laminated sandwich plates with soft core based onan improved higher order zigzag theory", Thin-Wall. Struct., 46(11), 1183-1191. https://doi.org/10.1016/j.tws.2008.03.002
- Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2008b), "Vibration characteristic of laminated sandwichplates with soft core based on an improved higher-order zigzag theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 222(8), 1443-1152.
- Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2009), "Analysis of laminated sandwich plates based on an improved higher order zigzag theory", J. Sandwich Struct. Mat., 24, 235-241.
- Pandya, B.N. and Kant, T. (1988), "Higher-order shear deformable theories for flexure of sandwich plates - finite element evaluations", Int. J. Solids Struct., 24(12), 419-451.
- Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H., Thai-Hoang, C. and Nguyen-Xuan, H. (2014a), "A cellbased smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation", Comput. Methods Appl. Mech. Eng., 272, 138-159. https://doi.org/10.1016/j.cma.2014.01.009
- Phung-Van, P., Luong-Van, H., Nguyen-Thoi, T. and Nguyen-Xuan, H. (2014b), "A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) based on the C0-type higher-order shear deformation theory for dynamic responses of Mindlin plates on viscoelastic foundations subjected to a moving sprung vehicle", Int. J. Num. Meth. Eng., 98(13), 988-1014. https://doi.org/10.1002/nme.4662
- Phung-Van, P., Nguyen-Thoi, T. and Nguyen-Xuan H. (2014c), "Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT", Comput. Methods Appl. Mech. Eng., 270, 15-36. https://doi.org/10.1016/j.cma.2013.11.019
- Phung-Van, P., Thai, Ch.H., Nguyen-Thoi, T. and Lieu-Xuan, Q. (2014d), "Static and free vibration analyses of composite and sandwich plates by an edge-based smoothed discrete shear gap method (ESDSG3) using triangular elements based on layerwise theory", Compos. Part B: Eng., 60, 227-238. https://doi.org/10.1016/j.compositesb.2013.12.044
- Phung-Van, P., Nguyen-Thoi, T., Dang-Trung H. and Nguyen-Minh, N. (2014e), "A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise theory based on the C0-HSDT for analyses of composite plates", Compos. Struct., 111, 553-565. https://doi.org/10.1016/j.compstruct.2014.01.038
- Phung-Van, P., Nguyen, L.B., Tran, L.V., Dinh, T.D., Thai, Ch.H., Bordas, S.P.A., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015a), "An efficient computational approach for control of nonlinear transient responses of smart piezoelectric composite plates", Int. J. Nonlin. Mech., 76, 190-202. https://doi.org/10.1016/j.ijnonlinmec.2015.06.003
- Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T. and Lieu-Xuan, Q. (2015b), "A cell-based smoothed threenode Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates", Comput. Mat. Sci., 96, 549-558. https://doi.org/10.1016/j.commatsci.2014.04.043
- Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A. and Nguyen-Xuan H. (2015c), "Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory", Compos. Struct., 123, 137-149. https://doi.org/10.1016/j.compstruct.2014.12.021
- Phung-Van, P., De Lorenzis, L., Chien, H., Thai, M., and Nguyen-Xuan, H. (2015d), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Comput. Mat. Sci., 96, 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
- Putcha, N.S. and Reddy, J.N. (1986), "Stability and natural vibration analysis of laminated plates by using a mixed element based on a refined plate theory", J. Sound Vib., 104(2), 285-300. https://doi.org/10.1016/0022-460X(86)90269-5
- Reddy, J.N. (2010), "Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates", Int. J. Eng. Sci., 48(11), 1507-1512. https://doi.org/10.1016/j.ijengsci.2010.09.020
- Sahoo, R. and Singh, B.N. (2013a), "A new shear deformation theory for the static analysis of laminated composite and sandwich plates", Int. J. Mech. Sci., 75, 324-344. https://doi.org/10.1016/j.ijmecsci.2013.08.002
- Sahoo, R. and Singh, B.N. (2013a), "A new inverse hyperbolic zigzag theory for the static analysis of laminated composite and sandwich plates", Compos. Struct., 105, 385-397. https://doi.org/10.1016/j.compstruct.2013.05.043
- Sahoo, R. and Singh, B.N. (2014), "A new trigonometric zigzag theory for static analysis of laminated composite and sandwich plates", Aero Sci. Tech., 35, 15-27. https://doi.org/10.1016/j.ast.2014.03.001
- Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38(7), 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003
- Sayyad, A.S. and Ghugal, Y.M. (2014), "A new shear and normal deformation theory for isotropic, transversely isotropic, laminated composite and sandwich plates", Int. J. Mech. Mater. Des., 10(3), 247-255. https://doi.org/10.1007/s10999-014-9244-3
- Srinivas, S. (1973), "A refined analysis of composite laminates", J. Sounds Vib., 30(4), 495-507. https://doi.org/10.1016/S0022-460X(73)80170-1
- Thai, Ch.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich platesbased on isogeometric approach", Comput. Struct., 141, 94-112. https://doi.org/10.1016/j.compstruc.2014.04.003
- Tran, L.V., Thai, Ch.H. and Nguyen-Xuan, H. (2013), "An isogeometric finite element formulation for thermal buckling analysis of functionally graded plates", Finite Elem. Anal. Des., 73, 65-76. https://doi.org/10.1016/j.finel.2013.05.003
- Vidal, P. and Polit, O. (2013), "A refined sinus plate finite element for laminated and sandwich structures under mechanical and thermomechanical loads", Comput. Methods Appl. Mech. Eng., 253, 396-404. https://doi.org/10.1016/j.cma.2012.10.002
Cited by
- A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.047
- Vibration of size-dependent functionally graded sandwich microbeams with different boundary conditions based on the modified couple stress theory 2017, https://doi.org/10.1177/1099636217738909
- Buckling analysis of nanocomposite cut out plate using domain decomposition method and orthogonal polynomials vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.691
- A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations 2017, https://doi.org/10.1177/1099636217727577
- Isogeometric buckling analysis of composite variable-stiffness panels vol.165, 2017, https://doi.org/10.1016/j.compstruct.2017.01.016
- Thermo-electro-mechanical vibration analysis of piezoelectric nanoplates resting on viscoelastic foundation with various boundary conditions vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.08.031
- Liouville-Green approximation: An analytical approach to study the elastic waves vibrations in composite structure of piezo material vol.184, 2018, https://doi.org/10.1016/j.compstruct.2017.10.031
- A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.547
- Approximation of surface wave velocity in smart composite structure using Wentzel–Kramers–Brillouin method pp.1530-8138, 2018, https://doi.org/10.1177/1045389X18786464
- Bending analysis of functionally graded plates using new eight-unknown higher order shear deformation theory vol.62, pp.3, 2017, https://doi.org/10.12989/sem.2017.62.3.311
- Shear buckling analysis of laminated plates on tensionless elastic foundations vol.24, pp.6, 2016, https://doi.org/10.12989/scs.2017.24.6.697
- An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
- A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
- A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
- An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
- Vibration analysis of thick orthotropic plates using quasi 3D sinusoidal shear deformation theory vol.16, pp.2, 2016, https://doi.org/10.12989/gae.2018.16.2.141
- Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load vol.29, pp.1, 2016, https://doi.org/10.12989/scs.2018.29.1.039
- Post-buckling analysis of shear-deformable composite beams using a novel simple two-unknown beam theory vol.65, pp.5, 2016, https://doi.org/10.12989/sem.2018.65.5.621
- Improved HSDT accounting for effect of thickness stretching in advanced composite plates vol.66, pp.1, 2016, https://doi.org/10.12989/sem.2018.66.1.061
- Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates vol.14, pp.6, 2016, https://doi.org/10.12989/gae.2018.14.6.519
- Free vibration and buckling analysis of orthotropic plates using a new two variable refined plate theory vol.15, pp.1, 2016, https://doi.org/10.12989/gae.2018.15.1.711
- A novel four-unknown quasi-3D shear deformation theory for functionally graded plates vol.27, pp.5, 2016, https://doi.org/10.12989/scs.2018.27.5.599
- Single variable shear deformation model for bending analysis of thick beams vol.67, pp.3, 2016, https://doi.org/10.12989/sem.2018.67.3.291
- A novel quasi-3D hyperbolic shear deformation theory for vibration analysis of simply supported functionally graded plates vol.22, pp.3, 2016, https://doi.org/10.12989/sss.2018.22.3.303
- A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams vol.27, pp.4, 2016, https://doi.org/10.12989/was.2018.27.4.269
- Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel vol.16, pp.1, 2016, https://doi.org/10.12989/eas.2019.16.1.055
- Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT vol.69, pp.5, 2016, https://doi.org/10.12989/sem.2019.69.5.511
- A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates vol.70, pp.3, 2019, https://doi.org/10.12989/sem.2019.70.3.325
- Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure vol.7, pp.3, 2019, https://doi.org/10.12989/anr.2019.7.3.181
- Interfacial imperfection study in pres-stressed rotating multiferroic cylindrical tube with wave vibration analytical approach vol.6, pp.10, 2016, https://doi.org/10.1088/2053-1591/ab3880
- Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT vol.7, pp.6, 2016, https://doi.org/10.12989/anr.2019.7.6.405
- On the modeling of dynamic behavior of composite plates using a simple nth-HSDT vol.29, pp.6, 2016, https://doi.org/10.12989/was.2019.29.6.371
- A refined HSDT for bending and dynamic analysis of FGM plates vol.74, pp.1, 2020, https://doi.org/10.12989/sem.2020.74.1.105
- Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory vol.25, pp.4, 2016, https://doi.org/10.12989/sss.2020.25.4.409