• Title/Summary/Keyword: parameter sensitivity

Search Result 1,000, Processing Time 0.027 seconds

Use of "Diagnostic Yield" in Imaging Research Reports: Results from Articles Published in Two General Radiology Journals

  • Ho Young Park;Chong Hyun Suh;Seon-Ok Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1290-1300
    • /
    • 2022
  • Objective: "Diagnostic yield," also referred to as the detection rate, is a parameter positioned between diagnostic accuracy and diagnosis-related patient outcomes in research studies that assess diagnostic tests. Unfamiliarity with the term may lead to incorrect usage and delivery of information. Herein, we evaluate the level of proper use of the term "diagnostic yield" and its related parameters in articles published in Radiology and Korean Journal of Radiology (KJR). Materials and Methods: Potentially relevant articles published since 2012 in these journals were identified using MEDLINE and PubMed Central databases. The initial search yielded 239 articles. We evaluated whether the correct definition and study setting of "diagnostic yield" or "detection rate" were used and whether the articles also reported companion parameters for false-positive results. We calculated the proportion of articles that correctly used these parameters and evaluated whether the proportion increased with time (2012-2016 vs. 2017-2022). Results: Among 39 eligible articles (19 from Radiology and 20 from KJR), 17 (43.6%; 11 from Radiology and 6 from KJR) correctly defined "diagnostic yield" or "detection rate." The remaining 22 articles used "diagnostic yield" or "detection rate" with incorrect meanings such as "diagnostic performance" or "sensitivity." The proportion of correctly used diagnostic terms was higher in the studies published in Radiology than in those published in KJR (57.9% vs. 30.0%). The proportion improved with time in Radiology (33.3% vs. 80.0%), whereas no improvement was observed in KJR over time (33.3% vs. 27.3%). The proportion of studies reporting companion parameters was similar between journals (72.7% vs. 66.7%), and no considerable improvement was observed over time. Conclusion: Overall, a minority of articles accurately used "diagnostic yield" or "detection rate." Incorrect usage of the terms was more frequent without improvement over time in KJR than in Radiology. Therefore, improvements are required in the use and reporting of these parameters.

A Study on the Stochastic Demand Forecast for the Capacity Calculation of Urban Planning Facilities (도시계획시설 용량 산정을 위한 확률적 수요 예측에 관한 연구)

  • Jae Young Kang;Jong Jin Kim
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.135-146
    • /
    • 2024
  • This study predicts the means sharing ratio of the urban air transportation (UAM) when the VertiHub of the UAM in the southern western part is built at Songjeong Station in Gwanju. Based on Monte Carlo simulation of the utility function and means selection logit model for each means of transportation, our findings indicate an average mode share of 0.95%, with a variability range from 0.07% to 4.7%. Moreover, 95% of the simulation outcomes fall below a 2.02% mode share. Sensitivity analysis, conducted via Tornado Plot, highlights that the mode share is principally influenced by factors such as the unit fare, cost parameter, basic fare, and the time required for takeoff and landing. Notably, a negative correlation exists for unit fare, basic fare, and takeoff and landing time, suggesting the necessity of setting an appropriate level of fair to enhance UAM utilization.

Hydrocephalus: Ventricular Volume Quantification Using Three-Dimensional Brain CT Data and Semiautomatic Three-Dimensional Threshold-Based Segmentation Approach

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.435-441
    • /
    • 2021
  • Objective: To evaluate the usefulness of the ventricular volume percentage quantified using three-dimensional (3D) brain computed tomography (CT) data for interpreting serial changes in hydrocephalus. Materials and Methods: Intracranial and ventricular volumes were quantified using the semiautomatic 3D threshold-based segmentation approach for 113 brain CT examinations (age at brain CT examination ≤ 18 years) in 38 patients with hydrocephalus. Changes in ventricular volume percentage were calculated using 75 serial brain CT pairs (time interval 173.6 ± 234.9 days) and compared with the conventional assessment of changes in hydrocephalus (increased, unchanged, or decreased). A cut-off value for the diagnosis of no change in hydrocephalus was calculated using receiver operating characteristic curve analysis. The reproducibility of the volumetric measurements was assessed using the intraclass correlation coefficient on a subset of 20 brain CT examinations. Results: Mean intracranial volume, ventricular volume, and ventricular volume percentage were 1284.6 ± 297.1 cm3, 249.0 ± 150.8 cm3, and 19.9 ± 12.8%, respectively. The volumetric measurements were highly reproducible (intraclass correlation coefficient = 1.0). Serial changes (0.8 ± 0.6%) in ventricular volume percentage in the unchanged group (n = 28) were significantly smaller than those in the increased and decreased groups (6.8 ± 4.3% and 5.6 ± 4.2%, respectively; p = 0.001 and p < 0.001, respectively; n = 11 and n = 36, respectively). The ventricular volume percentage was an excellent parameter for evaluating the degree of hydrocephalus (area under the receiver operating characteristic curve = 0.975; 95% confidence interval, 0.948-1.000; p < 0.001). With a cut-off value of 2.4%, the diagnosis of unchanged hydrocephalus could be made with 83.0% sensitivity and 100.0% specificity. Conclusion: The ventricular volume percentage quantified using 3D brain CT data is useful for interpreting serial changes in hydrocephalus.

Laplacian-Regularized Mean Apparent Propagator-MRI in Evaluating Corticospinal Tract Injury in Patients with Brain Glioma

  • Rifeng Jiang;Shaofan Jiang;Shiwei Song;Xiaoqiang Wei;Kaiji Deng;Zhongshuai Zhang;Yunjing Xue
    • Korean Journal of Radiology
    • /
    • v.22 no.5
    • /
    • pp.759-769
    • /
    • 2021
  • Objective: To evaluate the application of laplacian-regularized mean apparent propagator (MAPL)-MRI to brain glioma-induced corticospinal tract (CST) injury. Materials and Methods: This study included 20 patients with glioma adjacent to the CST pathway who had undergone structural and diffusion MRI. The entire CSTs of the affected and healthy sides were reconstructed, and the peritumoral CSTs were manually segmented. The morphological characteristics of the CST (track number, average length, volume, displacement of the affected CST) were examined and the diffusion parameter values, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), mean squared displacement (MSD), q-space inverse variance (QIV), return-to-origin probability (RTOP), return-to-axis probabilities (RTAP), and return-to-plane probabilities (RTPP) along the entire and peritumoral CSTs, were calculated. The entire and peritumoral CST characteristics of the affected and healthy sides as well as those relative CST characteristics of the patients with motor weakness and normal motor function were compared. Results: The track number, volume, MD, RD, MSD, QIV, RTAP, RTOP, and RTPP of the entire and peritumoral CSTs changed significantly for the affected side, whereas the AD and FA changed significantly only in the peritumoral CST (p < 0.05). In patients with motor weakness, the relative MSD of the entire CST, QIV of the entire and peritumoral CSTs, and the AD, MD, RD of the peritumoral CST were significantly higher, whereas the RTPP of the entire and peritumoral CSTs and the RTOP of the peritumoral CST were significantly lower than those in patients with normal motor function (p < 0.05 for all). In contrast, no significant changes were found in the CST morphological characteristics, FA, or RTAP (p > 0.05 for all). Conclusion: MAPL-MRI is an effective approach for evaluating microstructural changes after CST injury. Its sensitivity may improve when using the peritumoral CST features.

Prognostic Role of Right VentricularPulmonary Artery Coupling Assessed by TAPSE/PASP Ratio in Patients With Acute Heart Failure

  • Youngnam Bok;Ji-Yeon Kim;Jae-Hyeong Park
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.4
    • /
    • pp.200-206
    • /
    • 2023
  • BACKGROUND: Right ventricular (RV) dysfunction is a significant risk of major adverse cardiac events in patients with acute heart failure (AHF). In this study, we evaluated RV-pulmonary artery (PA) coupling, assessed by tricuspid annular plane systolic excursion (TAPSE)/pulmonary artery systolic pressure (PASP) and assessed its prognostic significance, in AHF patients. METHODS: We measured the TAPSE/PASP ratio and analyzed its correlations with other echocardiographic parameters. Additionally, we assessed its prognostic role in AHF patients. RESULTS: A total of 1147 patients were included in the analysis (575 men, aged 70.81 ± 13.56 years). TAPSE/PASP ratio exhibited significant correlations with left ventricular (LV) ejection fraction(r = 0.243, p < 0.001), left atrial (LA) diameter(r = -0.320, p < 0.001), left atrial global longitudinal strain (LAGLS, r = 0.496, p < 0.001), mitral E/E' ratio(r = -0.337, p < 0.001), and right ventricular fractional area change (RVFAC, r = 0.496, p < 0.001). During the median follow-up duration of 29.0 months, a total of 387 patients (33.7%) died. In the univariate analysis, PASP, TAPSE, and TAPSE/PASP ratio were significant predictors of mortality. After the multivariate analysis, TAPSE/PASP ratio remained a statistically significant parameter for all-cause mortality (hazard ratio [HR], 0.453; p = 0.037) after adjusting for other parameters. In the receiver operating curve analysis, the optimal cut-off level of TAPSE/PASP ratio for predicting mortality was 0.33 (area under the curve = 0.576, p < 0.001), with a sensitivity of 65% and a specificity of 47%. TAPSE/PASP ratio < 0.33 was associated with an increased risk of mortality after adjusting for other variables (HR, 1.306; p = 0.025). CONCLUSIONS: In AHF patients, TAPSE/PASP ratio demonstrated significant associations with RVFAC, LA diameter and LAGLS. Moreover, a decreased TAPSE/PASP ratio < 0.33 was identified as a poor prognostic factor for mortality.

Limitation of Prediction on Intravenous Immunoglobulin Responsiveness in Kawasaki Disease (가와사끼병에서 정맥용 면역글로불린 치료 반응 예측의 한계)

  • Kim, Seong-Koo;Han, Ji-Yoon;Rhim, Jung Woo;Oh, Jin Hee;Han, Ji-Whan;Lee, Kyung Yil;Kang, Jin-Han;Lee, Joon-Sung
    • Pediatric Infection and Vaccine
    • /
    • v.17 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • Purpose : We aimed to evaluate predictive parameters for non-response to intravenous immunoglobulin (IVIG) in patients with Kawasaki disease (KD) before IVIG use using two controls. Methods : We evaluated 229 consecutive KD patients who were treated with 2 g/kg of IVIG at a single center. Those who had persistent fever >24 hours after IVIG infusion made up the 23 IVIG non-responders; the first control included a total 206 defervesced cases and the second control included 46 cases that were matched for age and pre-treatment fever duration to non-responders. Results : Demographic and clinical characteristics were similar in IVIG non-responders and responders at presentation. As for laboratory findings, the neutrophil differential, CRP, AST, ALT, and LDH were higher, and lymphocyte differential, total protein, albumin, platelet count, and total cholesterol were significantly lower in IVIG non-responders compared to responders by univariate analysis in both study designs. However in multivariate analysis, non-responders showed a significantly higher neutrophil differential (cutoff value, >77%, sensitivity 68.4% and specificity 79.5%) and lower cholesterol (<124 mg/dL, sensitivity 79% and specificity 70.5%). Whereas plasma albumin (<3.6 g/dL, sensitivity 73.7% and specificity 60%) was the sole laboratory parameter of non-responders in the second study design. Conclusion : Severity of inflammation in KD was reflected by higher or lower laboratory values at presentation. Because the multivariate analysis for these indices may be influenced by some confounding factors, including the numbers of patients of different ages and fever duration, other assessment modalities are needed for KD patients with the greatest risk of coronary artery lesions.

The Study of New Reconstruction Method for Brain SPECT on Dual Detector System (Dual detector system에서 Brain SPECT의 new reconstruction method의 연구)

  • Lee, Hyung-Jin;Kim, Su-Mi;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyun-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.57-62
    • /
    • 2009
  • Purpose: Brain SPECT study is more sensitive to motion than other studies. Especially, when applying 1-day subtraction method for Diamox SPECT, it needs shorter study time in order to prevent reexamination. We were required to have new study condition and analysing method on dual detector system because triple head camera in Seoul National University Hospital is to be disposed. So we have tried to increase image quality and make the dual and triple head to have equivalent study time by using a new analysing program. Materials and Methods: Using IEC phantom, we estimated contrast, SNR and FWHM. In Hoffman 3D brain phantom which is similar with real brain, we were on the supposition that 5% of injected doses were distributed in brain tissue. To compare with existing FBP method, we used fan-beam collimator. And we applied 15 sec, 25 sec/frame for each SEPCT studies using LEHR and LEUHR. We used OSEM2D and Onco-flash3D reconstruction method and compared reconstruction methods between applied Gaussian post-filtering 5mm and not applied as well. Attenuation correction was applied by manual method. And we did Brain SPECT to patient injected 15 mCi of $^{99m}Tc$-HMPAO according to results of Phantom study. Lastly, technologist, MD, PhD estimated the results. Results: The study shows that reconstruction method by Flash3D is better than exiting FBP and OSEM2D when studied using IEC phantom. Flowing by estimation, when using Flash3D, both of 15 sec and 25 sec are needed postfiltering 5 mm. And 8 times are proper for subset 8 iteration in Flash3D. OSEM2D needs post-filtering. And it is proper that subset 4, iteration 8 times for 15sec and subset 8, iteration 12 times for 25sec. The study regarding to injected doses for a patient and study time, combination of input parameter-15 sec/frame, LEHR collimator, analysing program-Flash3D, subset 8, iteration 8times and Gaussian post-filtering 5mm is the most appropriate. On the other hands, it was not appropriate to apply LEUHR collimator to 1-day subtraction method of Diamox study because of lower sensitivity. Conclusions: We could prove that there was also an advantage of short study time effectiveness in Dual camera same as Triple gamma camera and get great result of alternation from existing fan-beam collimator to parallel collimator. In addition, resolution and contrast of new method was better than FBP method. And it could improve sensitivity and accuracy of image because lesser subjectivity was input than Metz filter of FBP. We expect better image quality and shorter study time of Brain SPECT on Dual detector system.

  • PDF

Sensitivity Analysis of Meteorology-based Wildfire Risk Indices and Satellite-based Surface Dryness Indices against Wildfire Cases in South Korea (기상기반 산불위험지수와 위성기반 지면건조지수의 우리나라 산불발생에 대한 민감도분석)

  • Kong, Inhak;Kim, Kwangjin;Lee, Yangwon
    • Journal of Cadastre & Land InformatiX
    • /
    • v.47 no.2
    • /
    • pp.107-120
    • /
    • 2017
  • There are many wildfire risk indices worldwide, but objective comparisons between such various wildfire risk indices and surface dryness indices have not been conducted for the wildfire cases in Korea. This paper describes a sensitivity analysis on the wildfire risk indices and surface dryness indices for Korea using LDAPS(Local Analysis and Prediction System) meteorological dataset on a 1.5-km grid and MODIS(Moderate-resolution Imaging Spectroradiometer) satellite images on a 1-km grid. We analyzed the meteorology-based wildfire risk indices such as the Australian FFDI(forest fire danger index), the Canadian FFMC(fine fuel moisture code), the American HI(Haines index), and the academically presented MNI(modified Nesterov index). Also we examined the satellite-based surface dryness indices such as NDDI(normalized difference drought index) and TVDI(temperature vegetation dryness index). As a result of the comparisons between the six indices regarding 120 wildfire cases with the area damaged over 1ha during the period between January 2013 and May 2017, we found that the FFDI and FFMC showed a good predictability for most wildfire cases but the MNI and TVDI were not suitable for Korea. The NDDI can be used as a proxy parameter for wildfire risk because its average CDF(cumulative distribution function) scores were stably high irrespective of fire size. The indices tested in this paper should be carefully chosen and used in an integrated way so that they can contribute to wildfire forecasting in Korea.

A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration (한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리모수의 영향)

  • Jang, Ji-Hyeon;Hong, Jin-Kyu;Byun, Young-Hwa;Kwon, Hyo-Jung;Chae, Nam-Yi;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.107-121
    • /
    • 2010
  • We conducted a sensitivity test of Joint UK Land Environment Simulator (JULES), in which the influence of biophysical parameters on the simulation of gross primary productivity (GPP) and ecosystem respiration (RE) was investigated for two typical ecosystems in Korea. For this test, we employed the whole-year observation of eddy-covariance fluxes measured in 2006 at two KoFlux sites: (1) a deciduous forest in complex terrain in Gwangneung and (2) a farmland with heterogeneous mosaic patches in Haenam. Our analysis showed that the simulated GPP was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration for both ecosystems. RE was sensitive to wood biomass parameter for the deciduous forest in Gwangneung. For the mixed farmland in Haenam, however, RE was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration like the simulated GPP. For both sites, the JULES model overestimated both GPP and RE when the default values of input parameters were adopted. Considering the fact that the leaf nitrogen concentration observed at the deciduous forest site was only about 60% of its default value, the significant portion of the model's overestimation can be attributed to such a discrepancy in the input parameters. Our finding demonstrates that the abovementioned key biophysical parameters of the two ecosystems should be evaluated carefully prior to any simulation and interpretation of ecosystem carbon exchange in Korea.

Uniform Hazard Spectrum for Seismic Design of Fire Protection Facilities (소방시설의 내진설계를 위한 등재해도 스펙트럼)

  • Kim, Jun-Kyoung;Jeong, Keesin
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.26-35
    • /
    • 2017
  • Since the Northridge earthquake (1994) and Kobe earthquake (1995), the concept of performance-based design has been actively introduced to design major structures and buildings. Recently, the seismic design code was established for fire protection facilities. Therefore, the important fire protection facilities should be designed and constructed according to the seismic design code. Accordingly, uniform hazard spectra (UHS), with annual exceedance probabilities, corresponding to the performance level, such as operational, immediate occupancy, life safety, and collapse prevention, are required for performance-based design. Using the method of probabilistic seismic hazard analysis (PSHA), the uniform hazard spectra for 5 major cities in Korea with a recurrence period of 500, 1,000, and 2,500 years corresponding to frequencies of (0.5, 1.0, 2.0, 5.0, 10.0)Hz and PGA, were analyzed. The expert panel was comprised of 10 members in seismology and tectonics. The ground motion prediction equations and several seismo tectonic models suggested by 10 expert panel members in seismology and tectonics were used as the input data for uniform hazard spectrum analysis. According to sensitivity analysis, the parameter of spectral ground motion prediction equations has a greater impact on the seismic hazard than seismotectonic models. The resulting uniform hazard spectra showed maximum values of the seismic hazard at a frequency of 10Hz and also showed the shape characteristics, which are similar to previous studies and related technical guides for nuclear facilities.