DOI QR코드

DOI QR Code

A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration

한국의 두 주요 생태계에 대한 JULES 지면 모형의 민감도 분석: 일차생산량과 생태계 호흡의 모사에 미치는 생물리모수의 영향

  • Jang, Ji-Hyeon (Department of Atmospheric Sciences, Global Environment Laboratory, Yonsei University) ;
  • Hong, Jin-Kyu (National Institute for Mathematical Sciences) ;
  • Byun, Young-Hwa (Climate Research Lab, National Institute of Meteorological Research) ;
  • Kwon, Hyo-Jung (Department of Atmospheric Sciences, Global Environment Laboratory, Yonsei University) ;
  • Chae, Nam-Yi (Division of Polar Climate Research, Korea Polar Research Institute, KORDI) ;
  • Lim, Jong-Hwan (Department of Forest Conservation, Korea Forest Research Institute) ;
  • Kim, Joon (Department of Atmospheric Sciences, Global Environment Laboratory, Yonsei University)
  • 장지현 (연세대학교 대기과학과 지구환경연구소) ;
  • 홍진규 (국가수리과학연구소) ;
  • 변영화 (국립기상연구소 기후연구실) ;
  • 권효정 (연세대학교 대기과학과 지구환경연구소) ;
  • 채남이 (한국해양연구원 극지연구소 극지기후연구부) ;
  • 임종환 (국립산림과학원 산림보전부) ;
  • 김준 (연세대학교 대기과학과 지구환경연구소)
  • Received : 2010.03.31
  • Accepted : 2010.06.24
  • Published : 2010.06.30

Abstract

We conducted a sensitivity test of Joint UK Land Environment Simulator (JULES), in which the influence of biophysical parameters on the simulation of gross primary productivity (GPP) and ecosystem respiration (RE) was investigated for two typical ecosystems in Korea. For this test, we employed the whole-year observation of eddy-covariance fluxes measured in 2006 at two KoFlux sites: (1) a deciduous forest in complex terrain in Gwangneung and (2) a farmland with heterogeneous mosaic patches in Haenam. Our analysis showed that the simulated GPP was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration for both ecosystems. RE was sensitive to wood biomass parameter for the deciduous forest in Gwangneung. For the mixed farmland in Haenam, however, RE was most sensitive to the maximum rate of RuBP carboxylation and leaf nitrogen concentration like the simulated GPP. For both sites, the JULES model overestimated both GPP and RE when the default values of input parameters were adopted. Considering the fact that the leaf nitrogen concentration observed at the deciduous forest site was only about 60% of its default value, the significant portion of the model's overestimation can be attributed to such a discrepancy in the input parameters. Our finding demonstrates that the abovementioned key biophysical parameters of the two ecosystems should be evaluated carefully prior to any simulation and interpretation of ecosystem carbon exchange in Korea.

본 연구에서는 한반도의 주요 생태계인 활엽수림과 농경지에서 지면 모형 JULES(Joint UK Land Environment Simulator)으로 모의한 총일차생산량 (Gross Primary Productivity: GPP)과 생태계 호흡량 (ecosystem respiration: RE)의 수치 모사 결과에 영향을 미치는 주요 모수를 파악하였으며, 민감한 모수에 대해 실측자료를 사용함에 따른 모형 예측력의 개선 정도를 평가하였다. 민감도 실험의 결과, 활엽수림과 농경지에서 모두 JULES로 모의한 GPP는 잎 내부의 질소농도와 리불로오스이인산(RuBP) 카르복실화의 최대 속도에 가장 민감하였다. RE는 활엽수림에서는 목질부 탄소량과 엽면적지수를 연결시켜주는 상수에 가장 민감하였다. 반면에 농경지에서 수치모사된 RE는 GPP와 같이 각각 잎 내부의 질소 농도와 RuBP 카르복실화의 최대 속도에 가장 민감하였다. JULES로부터 제공된 모수의 값으로 모의된 두 지역의 GPP와 RE는 모두 관측값에 비해 과대평가되었다. 특히 활엽수림에서 GPP가 가장 민감하게 반응했던 잎 질소 농도의 실제 관측값이 모형에서 사용하는 기존 설정값의 50% 이하임을 고려할 때 모형에서 설정된 모수의 값으로 탄소 순환을 수치 모사할 경우에 모수의 기존 설정값과 실제값의 차이가 모형의 과다모의에 상당한 영향을 미침을 확인할 수 있었다. 따라서 한반도 탄소순환의 현실적인 모의를 위해서는 모형에서 요구되는 생물리학적 정보가 한반도 다양한 식생 기능 형태를 현실적으로 잘 반영하는지를 확인해야 할 뿐 아니라 지속적인 현장 관측을 통해서 생물리학적 정보와 관련된 자료기반을 마련하는 것이 중요하다.

Keywords

References

  1. Alton, P., L. Mercado, and P. North, 2007: A sensitivity analysis of the land-surface scheme JULES conducted for three forest biomes: Biophysical parameters, model processes, and meteorological driving data. Global Biogeochemical Cycles 20, GB1008. https://doi.org/10.1029/2005GB002653
  2. Bastidas, L. A., H. V. Gupta, S. Sorooshian, W.J. Shuttleworth, and Z.L. Yang, 1999: Sensitivity analysis of a land surface scheme using multicriteria methods. Journal of Geophysical Research 104(D16), 19481-19490. https://doi.org/10.1029/1999JD900155
  3. Bonan, G. B., S. Levis, S. Sitch, M. Vertenstein, and K. W. Oleson, 2003: A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Global Change Biology 9(11), 1543-1566. https://doi.org/10.1046/j.1365-2486.2003.00681.x
  4. Chae, N., 2008: Soil $CO_2$ efflux in a temperate forest ecosystem under monsoon climate in Northeast Asia. Ph.D. Dissertation, Yonsei University.
  5. Chae, N., D. Lee, J.-H. Lim, J. Hong, and S. Kang, 2009: Inferring water and carbon exchanges from leaf carbon isotope composition of Quercus serrata and Carpinus laxiflora grown in a forest with a complex landscape in Korea. Asia-Pacific Journal of Atmospheric Sciences 45(2), 193-205.
  6. Collatz, G., M. Ribas-Carbo, and J. Berry, 1992: Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Functional Plant Biology 19(5), 519-538.
  7. Collatz, G. J., J. T. Ball, C. Grivet, and J. A. Berry, 1991: Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54(2-4), 107-136. https://doi.org/10.1016/0168-1923(91)90002-8
  8. Cox, P. M., 2001: Description of the "TRIFFID" dynamic global vegetation model. Technical Note 24, Hadley Centre, Met Office.
  9. Cox, P. M., R. A. Betts, C. B. Bunton, R. L. H. Essery, P. R. Rowntree, and J. Smith, 1999: The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Climate Dynamics 15(3), 183-203. https://doi.org/10.1007/s003820050276
  10. Cox, P. M., R. A. Betts, C. D. Jones, S. A. Spall, and I. J. Totterdell, 2000: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809), 184-187. https://doi.org/10.1038/35041539
  11. Cox, P. M., C. Huntingford, and R. J. Harding, 1998: A canopy conductance and photosynthesis model for use in a GCM land surface scheme. Journal of Hydrology 212-213, 79-94. https://doi.org/10.1016/S0022-1694(98)00203-0
  12. Cox, P. M., V.R. Jogireddy, and C. Huntingford, 2003: Central estimates and plausible ranges for TRIFFID parameters using Euroflux data. DEFRA CPP deliverable, 080403.
  13. Cramer, W., D. W. Kickighter, A. Bondeau, B. Moore, G. Churkina, B. Nemry, and A. S. Ruimy, A., 1999: Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biology 5(Suppl. 1), 1.
  14. El Maayar, M., D. T. Price, T. A. Black, E. R. Hymphreys, and E.-M. Jork, 2002: Sensitivity tests of the Integrated Biosphere Simulator to soil and vegetation characteristics in a Pacific Coastal coniferous forest. Atmosphere-Ocean 40(3), 313-332. https://doi.org/10.3137/ao.400303
  15. Fisher, R., S. Sitch, D. Galbraith, and C. Huntingford, 2008: Vegetation dynamics in JULES v2.0: The TRIFFID model. JULES science meeting, January, 2008. [Available from http://www.jchmr.org/jules/pdf/2008_Fisher_TRIFFID. pdf]
  16. Fox, A., M. Williams, A. D. Richardson, D. Cameron, J. H. Gove, T. Quaife, D. Ricciuto, M. Reichstein, E. Tomelleri, C. M. Trudinger, and M. T. Van Wijk, 2009: The reflex project: Comparing different algorithms and implementations for the inversion of a terrestrial ecosystem model against eddy covariance data. Agricultural and Forest Meteorology 149(10), 1597-1615. https://doi.org/10.1016/j.agrformet.2009.05.002
  17. Friedlingstein, P., P. Cox, R. Betts, L. Bopp, W. von Bloh, V. Brovkin, P. Cadule, S. Doney, M. Eby, I. Fung, G. Bala, J. John, C. Jones, F. Joos, T. Kato, M. Kawamiya, W. Knorr, K. Lindsay, H.D. Matthews, T. Raddatz, P. Rayner, C. Reick, E. Roeckner, K.-G. Schnitzler, R. Schnur, K. Strassmann, A. J. Weaver, C. Yoshikawa, and N. Zeng, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. Journal of Climate 19(14), 3337-3353. https://doi.org/10.1175/JCLI3800.1
  18. Friend, A. D., A. Arneth, N. Y. Kiang, M. Lomas, J. Ogee, C. Rodenbeck, S. W. Running, J.-D. Santaren, S. Stephen, N. Viovy, F. I. Woodward, and S. Zaehle, 2007: FLUXNET and modelling the global carbon cycle. Global Change Biology 13(3), 610-633. https://doi.org/10.1111/j.1365-2486.2006.01223.x
  19. Heimann, M., and M. Reichstein, 2008: Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(7176), 289-292. https://doi.org/10.1038/nature06591
  20. Henderson-Sellers, A., 1992: Assessing the sensitivity of a land-surface scheme to parameters used in tropical-deforestation experiments. Quarterly Journal of the Royal Meteorological Society 118(508), 1101-1116. https://doi.org/10.1002/qj.49711850805
  21. Hong, J., J. Kim, D. Lee, and J.-H. Lim, 2008: Estimation of the storage and advection effects on $H_2O\;and\;CO_2$ exchanges in a hilly KoFlux forest catchment. Water Resources Research 44, W01426. https://doi.org/10.1029/2007WR006408
  22. Hong, J., C. Cho, T.-Y. Lee, and M. Leclerc, 2009a: Impact of large-scale advection on regional heat flux estimation over patchy agricultural land. Asia-Pacific Journal of Atmospheric Sciences 45(2), 221-231.
  23. Hong, J., H. Kwon, J.-H. Lim, Y.-H. Byun, J. Lee, and J. Kim, 2009b: Standardization of KoFlux eddy-covariance data processing. Korean Journal of Agricultural and Forest Meteorology 11(1), 19-26. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.1.019
  24. Huntingford, C., P. P. Harris, N. Gedney, P. M. Cox, R. A. Betts, J. A. Marengo, and J. H. C. Gash, 2004: Using a GCM analogue model to investigate the potential for Amazonian forest dieback. Theoretical and Applied Climatology 78(1), 177-185.
  25. Jacobs, C. M. J., 1994: Direct impact of atmospheric $CO_2$ enrichment on regional transpiration. Ph.D. Dissertation, Wageningen Agricultural University.
  26. Janssens, I. A., H. Lankreijer, G. Matteucci, A. S. Kowalski, N. Buchmann, D. Epron, K. Pilegaard, W. Kutsch, B. Longdoz, T. Grunwald, L. Montagnani, S. Dore, C. Rebmann, E. J. Moors, A. Grelle, U. Rannik, K. Morgenstern, S. Oltchev, R. Clement, J. Guomundsson, S. Minerbi, P. Berbigier, A. Ibrom, J. Moncrieff, M. Aubinet, C. Bernhofer, N.O. Jensen, T. Vesala, A. Granier, E.-D. Schulze, A. Lindroth, A. J. Dolman, P. G. Jarvis, R. Ceulemans, and R. Valentini, 2001: Productivity overshadows temperature in determining soil and ecosystem respiration across european forests. Global Change Biology 7(3), 269-278.슖⨀삔슖⨀脀돐?⨀く⨀ꁟ⨀脐돀ᡠ?⨀쀪ꂣ?⨀夐돐삣?⨀삂?⨀좣?⨀덀𸾖⨀ᢣ?⨀Ā肺?⨀碄?⨀Ā袺?⨀䢄?⨀Ā낼?⨀碄?⨀Ā뢼?⨀䢄?⨀Ȁ偲슖⨀Ȁ恲슖⨀Ȁ?⨀碄?⨀Ā?⨀좋?⨀Ā?⨀颋?⨀ĀÇ?⨀梋?⨀Āࣇ?⨀㢋?⨀ĀჇ?⨀ࢋ?⨀Āᣇ?⨀𲮖⨀Ā⃇?⨀ꢊ?⨀Ā⣇?⨀碊?⨀Āデ?⨀䢊?⨀Ā㣇?⨀ᢊ?⨀Ā䃇?⨀?⨀Ā䣇?⨀뢉?⨀Ā僇?⨀袉?⨀Ā壇?⨀墉?⨀Ā惇?⨀⢉?⨀Ā棇?⨀?⨀Ā烇?⨀좈?⨀袚?⨀ႚ슖⨀₿?⨀ᢚ슖⨀₿?⨀ႚ슖⨀₿?⨀ᢚ슖⨀₿?⨀僆?⨀룅?⨀䢘슖⨀룅?⨀傘슖⨀룅?⨀냍?⨀룅?⨀₳슖⨀郉?⨀䂲슖⨀郉?⨀悱슖⨀郉?⨀肰슖⨀郉?⨀ꂯ슖 https://doi.org/10.1046/j.1365-2486.2001.00412.x
  27. Kang, M., S. Park, H. Kwon, H. T. Choi, Y.-J. Choi, and J. Kim, 2009: Evapotranspiration from a deciduous forest in a complex terrain and a heterogeneous farmland under monsoon climate. Asia-Pacific Journal of Atmospheric Sciences 45(2), 175-191.
  28. Kim, J., D. Lee, J. Hong, S. Kang, S.-J. Kim, S.-K. Moon, J.-H. Lim, Y. Son, J. Lee, S. Kim, N. Woo, K. Kim, B. Lee, B.-L. Lee, and S. Kim, 2006: Hydro Korea and CarboKorea: Cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21(6), 881-889. https://doi.org/10.1007/s11284-006-0055-3
  29. Kim, S.-B., H.-Y. Chun, and J. Kim, 1998: A validation study of the biosphere-atmosphere transfer scheme (BATS), using point micrometeorological data. Asia-Pacific Journal of Atmospheric Sciences 34(4), 602-612. (in Korean with English abstract)
  30. Knorr, W., and M. Heimann, 2001: Uncertainties in global terrestrial biosphere modeling, 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme. Global Biogeochemical Cycles 15(1), 207-225. https://doi.org/10.1029/1998GB001059
  31. Kwon, H., J. Kim, J. Hong, and J.-H. Lim, 2010: Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystem in Korea. Biogeosciences 7, 1493-1504. https://doi.org/10.5194/bg-7-1493-2010
  32. Kwon, H., T.-Y. Park, J. Hong, J.-H. Lim, and J. Kim, 2009: Seasonality of net ecosystem carbon exchange in two major plant functional types in Korea. Asia-Pacific Journal of Atmospheric Sciences 45(2), 149-163.
  33. Lee, H. C., J. Hong, C.-H. Cho, B. C. Choi, S.-N. Oh, and J. Kim, 2003: Surface exchange of energy and carbon dioxide between the atmosphere and a farmland in Haenam, Korea. Korean Journal of Agricultural and Forest Meteorology 5(2), 61-69.
  34. Lim, J.-H., J. H. Shin, G. Z. Jin, J. H. Chun, and H. S. Oh, 2003: Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2), 101-109.
  35. Liu, Y., H. V. Gupta, S. Sorooshian, L.A. Bastidas, and W. J. Shuttleworth, 2004: Exploring parameter sensitivities of the land surface using a locally coupled land-atmosphere model. Journal of Geophysical Research 109, D21101. https://doi.org/10.1029/2004JD004730
  36. Pitman, A. J., 1994: Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model. Journal of Climate 7(12), 1856-1869. https://doi.org/10.1175/1520-0442(1994)007<1856:ATSOAL>2.0.CO;2
  37. Prata, A. J., 1996: A new long-wave formula for estimating downward clear-sky radiation at the surface. Quarterly Journal of the Royal Meteorological Society 122(533), 1127-1151. https://doi.org/10.1002/qj.49712253306
  38. Ryu, Y., S. Kang, S.-K. Moon, and J. Kim, 2008: Evaluation of land surface radiation balance derived from moderate resolution imaging spectroradiometer (MODIS) over complex terrain and heterogeneous landscape on clear sky days. Agricultural and Forest Meteorology 148(10), 1538-1552. https://doi.org/10.1016/j.agrformet.2008.05.008
  39. Sellers, P. J., J. A. Berry, C. G. J., B. Field C, and F. G. Hall, 1992: Canopy reflectance, photosynthesis, and transpiration. 3. A reanalysis using improved leaf model and a new canopy integration scheme. Remote Sensing Environment 42, 187-215. https://doi.org/10.1016/0034-4257(92)90102-P
  40. Sellers, P. J., D. A. Randall, G. J. Collatz, J. A. Berry, C. B. Field, D. A. Dazlich, C. Zhang, G. D. Collelo, and L. Bounoua, 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: Model formulation. Journal of Climate 9(4), 676-705. https://doi.org/10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2
  41. Sitch, S., C. Huntingford, N. Gedney, P. E. Levy, M. Lomas, S. L. Piao, R. Betts, P. Ciais, P. Cox, P. Friedlingstein, C.D. Jones, I. C. Prentice, and F. I. Woodward, 2008: Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Global Change Biology 14(9), 2015-2039. https://doi.org/10.1111/j.1365-2486.2008.01626.x
  42. Vetter, M., G. Churkina, M. Jung, M. Reichstein, S. Zaehle, A. Bondeau, Y. Chen, P. Ciais, F. Feser, A. Freibauer, R. Geyer, C. Jones, D. Papale, J. Tenhunen, E. Tomelleri, K. Trusilova, N. Viovy, and M. Heimann, 2008: Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly using seven models. Biogeosciences 5(2), 561-583. https://doi.org/10.5194/bg-5-561-2008
  43. Wang, Y. P., D. Baldocchi, R. Leuning, E. Falge, and T. Vesala, 2007: Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Global Change Biology 13(3), 652-670. https://doi.org/10.1111/j.1365-2486.2006.01225.x
  44. Williams, M., A. D. Richardson, M. Reichstein, P. C. Stoy, P. Peylin, H. Verbeeck, N. Carvalhais, M. Jung, D. Y. Hollinger, J. Kattge, R. Leuning, Y. Luo, E. Tomelleri, C. Trudinger, and Y. P. Wang, 2009: Improving land surface models with FLUXNET data. Biogeosciences Discussions 6(2), 2785-2835. https://doi.org/10.5194/bgd-6-2785-2009
  45. Wilson, M. F., A. Henderson-Sellers, R. E. Dickinson, and P. J. Kennedy, 1987: Sensitivity of the biosphere atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics. Journal of Applied Meteorology 26(3), 341-362. https://doi.org/10.1175/1520-0450(1987)026<0341:SOTBTS>2.0.CO;2
  46. Xu, L., and D. D. Baldocchi, 2003: Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiology 23(13), 865-877. https://doi.org/10.1093/treephys/23.13.865

Cited by

  1. Evaluation of Land Surface Models: Focused on Andong and Yongdam Dam Basins vol.16, pp.1, 2016, https://doi.org/10.9798/KOSHAM.2016.16.1.63
  2. Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications vol.17, pp.5, 2011, https://doi.org/10.1111/j.1365-2486.2010.02337.x
  3. Uncertainty in carbon exchange modelling in a forest canopy due to kB−1 parametrizations vol.138, pp.664, 2012, https://doi.org/10.1002/qj.944
  4. Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC vol.25, pp.1, 2015, https://doi.org/10.14191/Atmos.2015.25.1.085
  5. Estimation of Vegetation Carbon Budget in South Korea using Ecosystem Model and Spatio-temporal Environmental Information vol.28, pp.1, 2012, https://doi.org/10.7780/kjrs.2012.28.1.145