• Title/Summary/Keyword: ecosystem respiration

Search Result 82, Processing Time 0.027 seconds

Relationship of root biomass and soil respiration in a stand of deciduous broadleaved trees-a case study in a maple tree

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.155-162
    • /
    • 2018
  • Background: In ecosystem carbon cycle studies, distinguishing between $CO_2$ emitted by roots and by microbes remains very difficult because it is mixed before being released into the atmosphere. Currently, no method for quantifying root and microbial respiration is effective. Therefore, this study investigated the relationship between soil respiration and underground root biomass at varying distances from the tree and tested possibilities for measuring root and microbial respiration. Methods: Soil respiration was measured by the closed chamber method, in which acrylic collars were placed at regular intervals from the tree base. Measurements were made irregularly during one season, including high temperatures in summer and low temperatures in autumn; the soil's temperature and moisture content were also collected. After measurements, roots of each plot were collected, and their dry matter biomass measured to analyze relationships between root biomass and soil respiration. Results: Apart from root biomass, which affects soil's temperature and moisture, no other factors affecting soil respiration showed significant differences between measuring points. At each point, soil respiration showed clear seasonal variations and high exponential correlation with increasing soil temperatures. The root biomass decreased exponentially with increasing distance from the tree. The rate of soil respiration was also highly correlated exponentially with root biomass. Based on these results, the average rate of root respiration in the soil was estimated to be 34.4% (26.6~43.1%). Conclusions: In this study, attempts were made to differentiate the root respiration rate by analyzing the distribution of root biomass and resulting changes in soil respiration. As distance from the tree increased, root biomass and soil respiration values were shown to strongly decrease exponentially. Root biomass increased logarithmically with increases in soil respiration. In addition, soil respiration and underground root biomass were logarithmically related; the calculated root-breathing rate was around 44%. This study method is applicable for determining root and microbial respiration in forest ecosystem carbon cycle research. However, more data should be collected on the distribution of root biomass and the correlated soil respiration.

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan

  • Lee, Mi-Sun
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.289-296
    • /
    • 2003
  • The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.

Simulating the Gross Primary Production and Ecosystem Respiration of Estuarine Ecosystem in Nakdong Estuary with AQUATOX (AQUATOX 모델을 이용한 낙동강 하구역의 총일차생산량 및 생물체 호흡량 예측 모델링)

  • Lee, Taeyoon;Hoang, Thilananh;Nguyen, Duytrinh;Han, Kyongsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.3
    • /
    • pp.15-29
    • /
    • 2021
  • The purpose of this study is to establish an ecosystem model that can predict ecosystem fluctuations in the Nakdong estuary, and use this model to calculate total primary production and respiration. AQUATOX model was used as the ecosystem model, and the model was calibrated and verified using the measured data. For the calibration of the model, chlorophyll-a data measured at the Nakdong estuary were used, and the model verification was performed using DO, TN, and TP data. In general, the total primary production and respiration volume vary greatly depending on the season, but the total primary production and respiration in the Nakdong estuary were greatly influenced by the amount of water discharged from Nakdong estuary bank. When the amount of effluent increased, photosynthesis could not be performed due to the loss of phytoplankton living in the lower area, and the total primary production amounted to zero, whereas the respiration increased sharply due to the inflow of organic substances contained in the effluent. The increase in the inflow water means the inflow of organic substances contained in the inflow water, and the organic substances are decomposed by oxidation, reducing dissolved oxygen. Compared with other countries' estuaries, the Nakdong estuary shows the lowest total primary production and because the respiration is larger than the total primary production, the dissolved oxygen is depleted by the oxidation of organic matter.

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • v.38 no.3
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.

Species-specific biomass drives macroalgal benthic primary production on temperate rocky reefs

  • Spector, Michael;Edwards, Matthew S.
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.237-252
    • /
    • 2020
  • Temperate rocky reefs dominated by the giant kelp, Macrocystis pyrifera, support diverse assemblages of benthic macroalgae that provide a suite of ecosystem services, including high rates of primary production in aquatic ecosystems. These forests and the benthic macroalgae that inhabit them are facing both short-term losses and long-term declines throughout much of their range in the eastern Pacific Ocean. Here, we quantified patterns of benthic macroalgal biomass and irradiance on rocky reefs that had intact kelp forests and nearby reefs where the benthic macroalgae had been lost due to deforestation at three sites along the California, USA and Baja California, MEX coasts during the springs and summers of 2017 and 2018. We then modeled how the loss of macroalgae from these reefs impacted net benthic productivity using species-specific, mass-dependent rates of photosynthesis and respiration that we measured in the laboratory. Our results show that the macroalgal assemblages at these sites were dominated by a few species of stipitate kelps and fleshy red algae whose relative abundances were spatially and temporally variable, and which exhibited variable rates of photosynthesis and respiration. Together, our model estimates that the dominant macroalgae on these reefs contribute 15 to 4,300 mg C m-2 d-1 to net benthic primary production, and that this is driven primarily by a few dominant taxa that have large biomasses and high rates of photosynthesis and / or respiration. Consequently, we propose that the loss of these macroalgae results in the loss of an important contribution to primary production and overall ecosystem function.

CO2 Respiration Characteristics with Physicochemical Properties of Soils at the Coastal Ecosystem in Suncheon Bay (순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Kim, Pil-Geun
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.217-227
    • /
    • 2010
  • This paper was studied $CO_2$ respiration rate with physicochemical properties of soils at wetland, paddy field and forest in Nongju-ri, Haeryong-myeon, Suncheon city, Jeollanam-do. Soil temperature and $CO_2$ respiration rate were measured at the field, and soil pH, moisture and soil organic carbon were analyzed in laboratory. Field monitoring was conducted at 6 points (W3, W7, W13, W17, W23, W27) for wetland, 3 points (P1, P2, P3) for paddy field and 3 points (F1, F2, F3) for forest in 10 January 2009. $CO_2$ concentrations in chamber were measured 352~382 ppm for wetland, 364~382 ppm for paddy field and 379~390 ppm for forest, and the average values were 370 ppm, 370 ppm and 385 ppm, respectively. $CO_2$ respiration rates of soils were measured $-73{\sim}44\;mg/m^2/hr$ for wetland, $-74{\sim}24\;mg/m^2/hr$ for paddy field and $-55{\sim}106\;mg/m^2/hr$ for forest, and the average values were $-8\;mg/m^2/hr$, $-25\;mg/m^2/hr$ and $38\;mg/m^2/hr$. $CO_2$ was uptake from air to soil in wetland and paddy field, but it was emission from soil to air in forest. $CO_2$ respiration rate function in uptake condition increased exponential and linear as soil temperature and soil organic carbon. But, it in emission condition decreased linear as soil temperature and soil organic carbon. $CO_2$ respiration rate function in wetland decreased linear as soil moisture, but its in paddy and forest increased linear as soil moisture. $CO_2$ respiration rate function in all sites increased linear as soil pH, and increasing rate at forest was highest.

Valuation of Ecosystem Services through Organic Carbon Distribution and Cycling in the Quercus mongolica Forest at Mt. Worak National Park (월악산 신갈나무림의 유기탄소 분포와 순환을 통한 생태계서비스 가치평가)

  • Won, Ho-Yeon;Shin, Chang-Hwan;Mun, Hyeong-Tae
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.315-325
    • /
    • 2014
  • Valuation of ecosystem services through organic carbon distribution and cycling in the Quercus mongolica forest at Mt. Worak national park were investigated from May 2012 through April 2013. The amount of carbon allocated to above and below ground biomass was 81.94 and 20.53 ton C/ha. Amount of organic carbon in litter layer was 6.49 ton C/ha. Amount of organic carbon within 50 soil depth was 141.23 ton C $ha^{-1}$ $50cm-depth^{-1}$. Total amount of organic carbon in this Quercus mongolica forest was estimated to 250.19 ton C $ha^{-1}$. The estimated amount of won in this Quercus mongolica forest in terms of total organic carbon was about 5.27 million won $ha^{-1}$. The amount of carbon evolved through soil respiration was 7.31 ton C $ha^{-1}yr^{-1}$. The amount of carbon evolved through microbial respiration and root respiration was 3.58 and 3.73 ton C $ha^{-1}yr^{-1}$, respectively. The amount of organic carbon absorbed from the atmosphere of this Quercus mongolica forest was 1.61 ton C $ha^{-1}yr^{-1}$ when estimated from the difference between net primary production and microbial respiration. This amount will come to about 33,000 won $ha^{-1}yr^{-1}$ in Korean currency.

The Study on Carbon Budget Assessment in Pear Orchard (배 재배지의 탄소수지 산정에 관한 연구)

  • Suh, Sanguk;Choi, Eunjung;Jeong, Hyuncheol;Lee, Jongsik;Kim, Gunyeob;Lee, Jaeseok;Sho, Kyuho
    • Korean Journal of Environmental Biology
    • /
    • v.33 no.3
    • /
    • pp.345-351
    • /
    • 2015
  • This study was conducted to find out the methodology of carbon budget assessment among soil, atmosphere and plant. Soil respiration, net ecosystem productivity of herbs and net ecosystem productivity of woody plants have been measured in 30 years old pear orchard at Naju. Closed Dynamic Chamber (CDC) method was used to measure soil respiration and net ecosystem productivity of herbs. Net ecosystem productivity of woody plant (pear) was determined by eddy covariance method using the EddyPro (5.2.1) program. As for soil respiration, $429.1mgCO_2m^{-2}h^{-1}$ was released to atmosphere and sensitivity of soil temperature ($Q_{10}$) was 2.3. In case of herbs, respiration was superior to photosynthesis during measurement period. From 20 to 24 Jun 2015, the sum of absorbed and released $CO_2$ by herb's photosynthesis and respiration was $156.1mgCO_2m^{-2}h^{-1}$. Woody plants showed the $680.1mgCO_2m^{-2}h^{-1}$ of absorption by photosynthesis. In a farm scale, the sum of soil respiration, and net ecosystem productivity of herbs and woody plants was $0.04tonCO_2ha^{-1}$ during the measurement period, and it showed that pear orchard act as a $CO_2$ sink. This study using various approaches is expected to present a methodology for evaluating the carbon budget of perennial woody crop plantations.

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.

Effect of rainfall events on soil carbon flux in mountain pastures

  • Jeong, Seok-Hee;Eom, Ji-Young;Lee, Jae-ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.41 no.11
    • /
    • pp.302-309
    • /
    • 2017
  • Background: Large-scale land-use change is being caused by various socioeconomic problems. Land-use change is necessarily accompanied by changes in the regional carbon balance in terrestrial ecosystems and affects climate change. Therefore, it is crucial to understand the correlation between environmental factors altered by land-use change and the carbon balance. To address this issue, we studied the characteristics of soil carbon flux and soil moisture content related to rainfall events in mountain pastures converted from deciduous forest in Korea. Results: The average soil moisture contents (SMC) during the study period were 23.1% in the soil respiration (SR) plot and 25.2% in the heterotrophic respiration (HR) plot. The average SMC was increased to 2.1 and 1.1% in the SR and HR plots after rainfall events, respectively. In addition, saturated water content was 29.36% in this grassland. The soil water content was saturated under the consistent rainfall of more than $5mm\;h^{-1}$ rather than short-term heavy rainfall event. The average SR was increased to 28.4% after a rainfall event, but the average HR was decreased to 70. 1%. The correlation between soil carbon flux rates and rainfall was lower than other environmental factors. The correlation between SMC and soil carbon flux rates was low. However, HR exhibited a tendency to be decreased when SMC was 24.5%. In addition, the correlation between soil temperature and respiration rate was significant. Conclusions: In a mountain pasture ecosystem, rainfall induced the important change of soil moisture content related to respiration in soil. SR and HR were very sensitive to change of SMC in soil surface layer about 0-10-cm depth. SR was increased by elevation of SMC due to a rainfall event, and the result was assumed from maintaining moderate soil moisture content for respiration in microorganism and plant root. However, HR was decreased in long-time saturated condition of soil moisture content. Root has obviously contributed to high respiration in heavy rainfall, but it was affected to quick depression in respiration under low rainfall. The difference of SMC due to rainfall event was causative of a highly fluctuated soil respiration rate in the same soil temperature condition. Therefore, rainfall factor or SMC are to be considered in predicting the soil carbon flux of grassland ecosystems for future climate change.