• Title/Summary/Keyword: parameter function

Search Result 2,972, Processing Time 0.029 seconds

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

ADAPTIVE STABILIZATION OF NON NECESSARILY INVERSELY STABLE CONTINUOUS-TIME SYSTEMS BY USING ESTIMATION MODIFICATION WITHOUT USING HYSTERESIS FUNCTION

  • Sen, M.De La
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.29-53
    • /
    • 2001
  • This note presents a an indirect adaptive control scheme for first-order continuous-time systems. The estimated plant model is controllable and then the adaptive scheme is free from singularities. The singularities are avoided through a modification of the estimated plant parameter vector so that its associated Sylvester matrix is guaranteed to be nonsingular. That properties is achieved by ensuring that the absolute value of its determinant does not lie below a positive threshold. A modification scheme based on the achievement of a modified diagonally dominant Sylvester matrix of the parameter estimates is also given as an alternative method. This diagonal dominance is achieved through estimates modification as a way to guarantee the controllability of the modified estimated model when a controllability measure of the ‘a priori’ estimated model fails. In both schemes, the use of a hysteresis switching function for the modification of the estimates is not required to ensure the nonsingularity of the Sylvester matrix of the estimates.

  • PDF

A Transmission Parameter Optimization Scheme Based on Genetic Algorithm for Dynamic Spectrum Access (동적 스펙트럼 접근을 위한 유전자 알고리즘 기반 전송 매개변수 최적화 기법)

  • Chae, Keunhong;Yoon, Seokho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.938-943
    • /
    • 2013
  • In this paper, we propose a transmission parameter optimization scheme based on genetic algorithm for dynamic spectrum access systems. Specifically, we represent a multiple objective fitness function as a weighted sum of single objective fitness functions to optimize transmission parameters, and then, obtain optimized transmission parameters based on genetic algorithm for given transmission scenarios. From numerical results, we confirm that the transmission parameters are well optimized by using the proposed optimization scheme.

Goodness-of-Fit Test Based on Smoothing Parameter Selection Criteria

  • Kim, Jong-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.122-136
    • /
    • 1995
  • The objective of this research is to investigate the problem of goodness-of-fit testing based on nonparametric density estimation with a data-driven smoothing parameter. The small and large sample properties of a new test statistic $\hat{\lambda_a}$ is investigated. The test statistic $\hat{\lambda_a}$ is itself a smoothing parameter which is selected to minimize an estimated MISE for a truncated series estimator of the comparison density function. Therefore, this test statistic leads immediately to a point estimate of the density function th the event that $H_0$ is rejected. The limiting distribution of $\hat{\lambda_a}$ is obtained under the null hypothesis. It is also shown that this test is consistent against fixed alternatives.

  • PDF

TEMPERATURE FLUCTUATION AND EXPECTED LIMIT OF HUBBLE PARAMETER IN THE SELF-CONSISTENT MODEL

  • Morcos, A.B.
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.4
    • /
    • pp.81-87
    • /
    • 2006
  • A relation between temperature and time has been constructed in the self-consistent model(SCM). This relation is used to calculate the a CMBR temperature. This temperature has been found to be 2.9K. The temperature gradient of microwave background radiation(CMBR) is calculated in the Self Consistent Model. Two relations between Hubble parameter and time derivative of the temperature, have been presented in two different cases. In the first case the temperature is treated as a function of time only, while in the other one, it is assumed to be a function in time and solid angle, beside the assumption that the universe expands adiabatically.

Design of Suboptimal Robust Kalman Filter for Linear Systems with Parameter Uncertainty (파라미터 불확실성을 갖는 선형 시스템에 대한 준최적 강인 칼만필터 설계)

  • Jin, Seung-Hee;Kim, Kyung-Keun;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.620-623
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal Kalman filter with robust state estimation performance for system models represented in the state space, which are subjected to parameter uncertainties in both the state and measurement matrices. Under the assumption that the uncertain system is quadratically stable, if the augmented system composed of the uncertain system and the filter is controllable, the proposed filter can provide the upper bound of the estimation error variance for all admissible uncertain parameters. This upper bound can be represented as the convex function of a parameter introduced in the design procedure, and the optimized upper bound of the estimation error variance can also be found via the optimization of this convex function.

  • PDF

Interval-based Controller Design Considering Parameter Variations for DC/DC Converters (DC/DC 컨버터의 파라미터 변화를 고려한 구간분석법 기반 제어기 설계)

  • Choi, Sungjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.879-885
    • /
    • 2013
  • By performing interval analysis on the system transfer function, we propose an improved method of control loop design for a DC/DC converter. In conventional design methods, the effect of system parameter change due to the specified range of operating conditions and production tolerances in power components should be checked a posteriori, because this may result in a transfer function shift and performance degradation. In the proposed method, a possible parameter change is considered a priori in the design step in order that the desired crossover frequency and sufficient phase margin can be achieved even in the worst case condition. As an illustrative example, a buck dc/dc converter is designed by two different methods and performance comparisons are performed to verify the feasibility of the proposed scheme.

A New Method of the Global Interpolation in NURBS Surface: II (NURBS Surface Global Interpolation에 대한 한 방법: II)

  • 정형배
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.243-250
    • /
    • 1998
  • In parametric surface interpolation, the choice of the parameter values to the set of scattered points makes a great deal of difference in the resulting surface. A new method is developed and tested for the parametrization in NURBS surface global interpolation. This method uses the parameter value at the maximal value of relevant rational basis function, to assign the parameter values to the arbitrary set of design data. This method gives us several important advantages in geometric modeling, the freedom of the selection of knot values, the feasible transformation of the data set to the matrix, the possibility of affinite transformation between the design data and generated surface, etc.

  • PDF

A Generalized Least Square Method using Dead Zone (불감대를 사용한 최소자승법의 일반화)

  • 이하정;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.727-732
    • /
    • 1988
  • In this paper, a parameter estimation method of linear systems with bounded output disturbances is studied. The bound of the disturbances is assumed to known Weighting factors are proposed to modify LS(Least Square) algorithm in the parameter estimation method. The conditions of weighting factors are given so that the estimation method has good convergence properties. This condition is more relaxed form than other known conditions. The compensation term in the estimation equations is represented by a function of the output prediction error and this function should lie in a specified region on x-y plane to satisfy these conditions of weighting factors. A set of weighting factor is selected and an algorithm is proposed using this set of weighting factor. The proposed algorithm is compared with another existing algorithm by simulation and its performance in parameter estimation id discussed.

  • PDF

The Analysis of Discharge Distribution due to the Inner Void of Extra High Voltage Cable

  • Kim Tag-Yong;Hong Jin-Woong
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.4
    • /
    • pp.155-160
    • /
    • 2005
  • This paper addresses the discharge characteristics of cross-linked polyethylene according to void by the Weibull function. It analyzes discharge number and amount of discharge using Weibull distribution to identify the inter-relationship between partial discharge and defect. We detected a 10 second discharge. The applied voltage increased by 1 [kV] at discharge inception voltage. As a result, in a no-void specimen, the shape parameter was consistent according to the increase of voltage, whereas, in a void specimen, it increased according to the increase of voltage. As the result, the shape parameter expressed a fixed value at no-void specimen. However, in void specimen, according to increasing voltage shape parameter rapidly increases.