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ABSTRACT

A relation between temperature and time has been constructed in the self-consistent model (SCM). This relation
is used to calculate the a CMBR temperature. This temperature has been found to be 2.9K. The temperature
gradient of microwave background radiation (CMBR) is calculated in the Self Consistent Model. Two relations
between Hubble parameter and time derivative of the temperature, have been presented in two different cases. In
the first case the temperature is treated as a function of time only, while in the other one,it is assumed to be a
function in time and solid angle, beside the assumption that the universe expands adiabatically.
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I. INTRODUCTION

The cosmic microwave background radiation (CMBR)
temperature is one of the important parameters of any
cosmological model. The three characteristics of this
radiation are its spectrum, spatial anisotropy and po-
larization. The COBE Far-Infrared Absolute Spec-
trophotometer (FIRAS) has determined the black body
temperature of (CMBR) to be 2.728 + 0.004K (Keat-
ing et al. 1998), this value is in agreement with El
Naschie (2002; 2003) estimated value. The COBE
Differential Microwave Radiometer (DMR) experiment
has detected spatial anisotropy of the (CMBR) on '10°
scales of %:‘C ~ 1.1 x 107% K. Ground and balloon-
based experiments have detected anisotropy at smaller
scales (Douglas, Silk & White, 1995). Many authors
attributed these anisotropies to simple linear or non-
linear processing in the primordial fluctuations (Hu et
al. 1997; Challinor ; Lasenby 1999; Melek 2002).

Recently Wilkinson Microwave Anisotropy Probe
(WMAP) satellite, which is designed for precision mea-
surement of the CMBR anisotropy on the angular scales
ranging from the full sky down to several arc min-
utes. This ongoing mission has already provided a clear
record of the conditions in the universe from the epoch
of last scattering to the present. WMAP results were
used to test cosmological theories of the accelerating
Universe to seek clues to the nature of the dark energy.
Despite the absence of a direct dark-energy interaction
with our baryonic world, the CMBR photons provide a
probe of the presence of the dark energy, complemen-
tary to the type la supernovae (Rebort Caldwell and
Michael Doran 2003). Joshue et al. (2003) showed that
the Planck CMBR mission can be significant. In gen-
eral the observational limit of the temperature fluctu-
ations % becomes lower and lower and it has reached
almost 107 (Keating et al. 1998).

In the next two sections a brief review of the self-

consistent model (SCM) and its validity will be given.
In §4, time-temperature relation in"the SCM is calcu-
lated. In §5, the theoretical technique for calculating
the gradient of any scalar cosmic field is described. In
86, a relation between CMBR gradient and Hubble pa-
rameter is detected in the self-consistent model. In §7,
discussion and concluding remarks are given.

II. THE SELF-CONSISTENT MODEL (SCM)

Wanas(1989) has constructed the SCM, a cosmo-
logical model in the frame work of Generalized Field
Theory (GFT) (Mikhail & Wanas 1977). This the-
ory was constructed in a 4-dimensional Absolute Par-
allelism (AP)-Geometry. In 1986 Wanas suggested a
set of conditions to be satisfied by any geometric struc-
ture in AP-Geometry to be suitable for cosmological
applications. This set of conditions, if satisfied, would
guarantee that a geometric structure would represent,
a homogeneous, isotropic, electrically neutral and non-
empty universe. Wanas (1989) has used one of the AP-
structures, constructed by Robertson (1932), satisfy-
ing the conditions mentioned above, to construct SCM.
The geometric structure used in that model is given in
the spherical polar coordinates by,

V-1 0 0 0
O L+Sl4 (L_SQ4-KT‘S3) —(L_53+K7‘SQ4)
“ 4R 4arR 4rRSq
X = 0 L1813 (L S23—KrS4) (L~ 84—KrSs3)
¢ iR 4rR 4r RS,
0 LTS, —-L~ S5 K
4R 4rR 16R
(1)

where S; = sinf, S; = cosf, S3 = sin¢, S; = cos ¢,
S14 = S1 S4, S2a = S2 Sa, S23 = Sz Ss, 513 = S1 S,
and K = 4k?. Also [¥ = 4 + kr?, where k is the
curvature of the space and R(t) is an unknown function
of ¢t only. It is to be considered that the Riemannian
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space, associated with (1), is given by
dS? = ., dz* dz”, (2)

with the metric tensor given by,
A o
Guv Ei i 5\” i\ua
~uvdef. ;
py %8s e\ WY 3
g % AN (3)

where e;(= 1,—1,—1,-1) is Levi-Civita’s indicator.
The metric tensor corresponding to the tetrad (1) is
given by

LH\2 _gu1 _ 11
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o

where 1, ¥(=0,1,2,3).

According to the GFT (Mikhail & Wanas 1977), the
field equations are given by

E*y =0, (6)

where E*v is a second order tensor, non-symmetric
tensor defined in AP-space. Wanas (1989) has used (6)
and tetrad (1) to find the following set of differential
equations:

R 4k

mte =% (7)
2R R2 4k
R rmte=0 ®)

where the dots represents differentiation with respect
to time ¢. Integration of (7), gives immediately

R=R+ 2(-k)7 ¢, (9)

where R is a constant of integration, giving the value
of the scale factor at t = 0. If k takes the value zero,
the SCM will be a static empty model, and when k =
+1 it will give an imaginary scale factor. So we must
take k = —1 for non-static, non-empty model, and the
solution (9) will take the form,

R=R+2t, (10)

with £ = —1.
The geometric energy momentum tensor S,, ¥ in the
SCM, according to GFT is defined as

def
S;w = Wy ~ Opv + g;wAa (11)

where et
e o € o €
w/—LV - ’Y.p,e’)/.cw +/y,ue/y.au7
def ¢ o
Ouv = YapYev o

def
a det o
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and the semi-colon (;) denotes covariant differentiation.
Wanas (1989) has got the non-vanishing values of S,
by evaluating (11) and (12) using the tetrad (1) as:

9k 3k
=ﬁ,311:S22:‘533:ﬁ’ (13)

III. VALIDITY OF THE SELF-CONSISTENT
MODEL (SCM)

Sp ©

To facilitate comparison of SCM with the results of
the relativistic cosmology, and those of observations,
Wanas (1989) has defined the used quantities in rela-
tivistic cosmology as follows:

R
g &L the Hubble parameter,
def 1
T = H the age parameter,
def R .
h = 7 the acceleration parameter,
def h .
q = = the deceleration parameter.

the material energy tensor of the GFT is a purely ge-
ometrical object. Therefore to get an idea about the
material contents of this model, Wanas (1989) has used
the quantity
aef _ 5%
~ 3HY

where S9 is a component of the mixed form of the
tensor (11). The value of this quantity at the present
epoch (2,) is called matter parameter. Evaluating the
previous quantities for SCM, he got

(14)

2
H: =
B+ot’
1_
’7"—-5 +2t,
h =0,
q=0,
3
Q==
4

Wanas (1989) has used The value of the Hubble pa-
rameter (=~ 50 km s~! Mpc™!) required by time -scale
agreements with FRW-models for qg = 0. He got the
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age of the universe t5 = 2 x 10'° years. The previ-
ous result are in consistent with observed values ex-
cept for Q1y which is greater than the observed upper
limit (for more details see Wanas 1989). This means
that the SCM is a cosmological model fixing the cur-
vature constant to be -1. It also satisfies the weak and
strong energy conditions, and it is free of particle hori-
zon (for more details about the model and its relation
with Friedman-Robertson-Walker cosmological model,
see Wanas [1989], [2003]). The model is not contradict
with recent supernovae observations (Riess et al. 2004).
The negative curvature, uniquely fixed by the model,
is among recently discussed reasons of the WMAP low
multi-pole anomaly (Gurzadyan et al. 2003; Ichikawa
et al. 2006). So, this model deserves further examina-
tion. It is worth mentioning that the energy momentum
tensor in this model is not a phenomenological object
but it is a geometrical one.

IV. THE TIME-TEMPERATURE RELATION
IN SCM

In the following we are going to find the relation
between time and temperature in SCM. We accept a
hot Big Bang thermal history (Narlikar 1983, Wein-
berg 1972) to find the time and temperature relation
in SCM. We are going to assume that, in the early
stages of the universe, the radiation was that of a black
body with temperature T" given by Narlikar (1983)

By ? =a T4, (15)

where B,, ¥ is the phenomenological energy-momentum
tensor, and « is the radiation constant.

If we assume that the geometric energy momentum
tensor is related to the phenomenological one via the
relation,

S,"=HB,", (16)

where H is a conversion constant equal to 8132G, G is

the gravitational constant and ¢ is the speed of light.
If we use (10), (13), (15) and (16), we have

9 \ /4 9 1/2
T=|— - . 17
(@) (7)o

As it is well known that the relation between temper-
ature and time depends on the type of particles filling
the model and the kind of interaction between them at
a certain temperature range. Thus, it is more conve-
nient to rewrite the relation (17) in the form,

r= (m)”“ W

where + is a parameter depending on types of parti-
cles and their interactions. Since we accept the same
temperature history of hot Big Bang, we accept also
the type of particles and its interactions for each tem-
perature range. Then 7 takes the values (Narlikar

1983): v = J in temperature range (102 — 10° K)

and v = 1.45, when temperature less than 10°K.
The relation (18) may be used to determine the pa-

rameter R, if all other constants are known. If it is
assumed that at time ¢ = 0, the temperature of the
universe was 10" K as it is usually used in the liter-
ature (Narlikar 1983), the value of the parameter R is
obtained to be 3.7 x 10™% sec. The relation (18) takes
the form

9 1/4
= . 1
T (a’H v+ (3.7x 1074 + 2t)2> (19)

If we detect that at the temperature ~. 4000K nuclei
and electrons recombine, so that the matter becomes ef-
fectively transparent to the background radiation (Mc-
Crea 1983). This recombination temperature is con-
stant for any cosmological model, since it depends only
on the thermal history of the universe, to be transpar-
ent to the background radiation. If we use the equation
(19) to find the ratio between the temperatures at the
time of recombination and now, we have

(i) -(s)
To scm to scm ’

where the subscripts 7 and 0 mean at recombination
and now. As it is well known that in the standard
model (SM), which was constructed in the frame work
of the General Theory of Relativity (GTR), the time-
temperature relation is given by Narlikar (1983), as

- (20)

Top oty . (21)

So we can write a relation similar to (20) for the SM,

as o
(2o)-Gm) - @
Tosm to sm

From (20) and (22), taking into our consideration that
the recombination temperature and the age of the uni-
verse are the same in both of the two models i.e

to scm = to SM,

To scm\ _ (tr scm 1z
=) (23)
Ty sm tr sm
The time of recombination in the SCM, is determined
by using (18). It takes the value (¢, sopm = 2.1 X
10%*3sec ), while the corresponding time in the SM
was given by Weinberg (1972, page 540) as (t, sy =
1.92 x 10*3 sec). If we use these two values in equation

(23), we find
(M) — 1.09, (24)
To sm

T’r‘ SCM = Tr SM 5

we have
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As it is well known that the accepted value for CMBR
temperature in SM is 2.7K. So the CMBR tempera-
ture in SCM takes the value 2.95K. This is somewhat
higher than the most recent temperature determined
by FIRAS instrument on COBE to be 2.725 4 0.001K
(Michael 2002).

V. THE GRADIENT OF ANY COSMIC
SCALAR FIELD

A procedure, used in meteorology, to study the tem-
perature gradient in the Earth’s atmosphere has been
generalized by Melek (1992). The generalized tech-
nique has been used to study the matter density and
temperature gradients in the universe. He defined the
function F, for any cosmic measurable scalar field S,
in a curved space-time with metric g, as:

def.dG
g~ dr’ (25)
where Gde:lc'(g“"SHS,,)l/Q, (26)
and S, = %, (27)

where S, is a time-like covariant vector, 4 =0,1,2,3
and 7 is the cosmic time. Melek has shown that the
function Fj has the form:

F, = el 9" Sue Sy u”, (28)
where S, is the usual covariant derivative with re-
def- da”

spect to z¢ and u® — . The second derivative of
the absolute value of the gradient of any cosmic scalar
field S, with respect to the cosmic time 7, is given by:

de 1 uv, o, o 2
arz el {9 uu’[ Spiva Sy + SuioSuial _Fg}‘
(29)
Melek (1995) has applied this procedure to a spa-
tially perturbed Friedman-Robertson-Walker cosmo-
logical model, to put a lower limit for the Hubble pa-
rameter. Melek (2000), also has used the same tech-
nique for FRW to study limits on cosmic time scale
variations of gravitational and cosmological constants.
The same procedure has been used by Melek (2002),
to find the primordial angular gradients in the temper-
ature of the microwave background radiation and the
density functions in the same cosmological model.

In what follows we are going to use the same tech-
nique to find the gradient of microwave back ground
radiation’s temperature in SCM. Also, we will find a
relation between this gradient and the Hubble param-
eter.

VI. CMBR TEMPERATURE GRADIENT IN
THE SCM AND AN EXPECTED LIMIT
OF HUBBLE PARAMETER

The metric of the Riemannian space, associated with
the AP-space (1), can be written using, equations (2),
(4) and (5), as

16 R?

dS? = dt* — 5
L+

[dr2 + 72 d#? + r? sind d¢>] ,

(30)
where Lt =4+ r2k.
Now if we follow the coordinate transformation,

dt = R(t)dr, (31)

in the metric (24), we can write

dS? = R*(t) {d7-2 — Zlf—Z [dr® + r* d0% + r? sinf dg] ;,

(32)
where R(t) is the scale factor and 7 is the cosmic time.
If we assume that the microwave background radiation
temperature T'(¢) is our scalar field, and this field varies
with time only. If we use (27), then we can write

def. d T
b= T (33)
dT dt .
=— —=RT, 34
=437 a7 r (34)
where T= % . Since the covariant differentiation is
defined as,

T,.p=T, ,—{° T (35)

wiv B, v wf 17

Now if we use (35) by taking u=r =0 and consider-
ing that the temperature is a function of time only (i.e
Ty =T, =Ts;=0and {J} =0), we have

To;0 = To,0

To,o = R(RT-R T), (36)
If we assume that the CMBR is independent of the
radial coordinate at any fixed cosmic time and the mo-

tion in the universe is only due to its expansion. We
use (25), (26), (27), (28), (29) and (36), to have

F= —-= . 37

<T 7 T> (37)

Since the SCM has been assumed to be homogenous
and isotropic then F = 0 i.e,
. R .

-= = 0. 38

T-% T (38)
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Equation (37) leads directly to the fOHOV\’Ing result,

T R

T-% (39)

Noting that % = H, as usually done, then we get
T_ g (40)
T

It is clear from the last equation that all the quan-
tities on its left hand side are unmeasurable quantities
until now. If these quantities are measured by COBE,
WMAP or any other satellite, the Hubble parame-
ter is determined. If we assume that the microwave
background radiation temperature T, our scalar field,
varies with time and solid angle instead of time only.
Then cosmological perturbation theories are useful in
such case. Many authors handled the problem of cos-
mological perturbation in detail. Kodama & Sasaki
(1984) reviewed and reformulated the linear cosmolog-
ical perturbation theory of spatially homogeneous and
isotropic universe. They imposed three types of per-
turbation on the metric and the phenomenological en-
ergy momentum tensor, for n-dimensional space. Many
other authors follow the same or similar formulations
(Tomita 2005; Hwang & Noh 2005; Bozza & Veneziano
2005). Since the energy momentum tensor in the SCM
is not a phenomenological object but is a geometri-
cal one. Therefore any perturbation theory using phe-
nomenological energy tensor must be reformed to suit
the used model. This point will be considered in a fu-
ture work. So for simplicity we will use the spatially
perturbed form of the metric, in the spherical polar
coordinates, to write the metric (32) (Melek [2002],
[2000], [1995]; Linder [1997], Wright et al. [1994]; Suto,
Gouda & Sugiyama [1990], Peebles & Yu [1970] and ref-
erences therein) as:

) s  16(1+hy)?
R2(t){dr? - —

—7? (1 + h3) dQ?},

ds? = dr® — hardrd$)

(41)

where § is the solid an% e defined in terms of # and ¢
as d2 = df? + sin?0 d¢? and hq, hy and hg are
small spatial perturbations. If we use the metric (41)
taking into our consideration that the homogeneity is

valid (ie 4L = 0, and @8t I = 0), and we assume
that the expansion is the only motion in the universe,
and this expansion affects on the temperature. If we
consider the temperature of the CMBR as a function of
the cosmic time and direction i.e T'(¢,2) and we follow
the same procedure as before, then equation (28) takes
the form

where T def- 0T
SCM as

If we write now the metric of the

Q|

dS? = R%(t) {d72 — %dﬁ - 7 dQQ} . (43)

then, after some straight forward calculations, the tem-
poral variation of the magnitude of the gradient of T

is given by:
T R T R
Fsom = <GR(t)> (T‘Tz T) ( )<3t R
44

Using (44), we can write (42) in the the following form

erer () (E-47) o

Since SCM is an isotropic and homogenous model and
our calculatlons are d%erformed in spatial Co—moving co-
ordinates (1.e &£ = 9 = 0), assuming that the universe
expands adlabatlcally, then the gradient (44) vanishes.
In another wording the primordial born differences in
temperature of CMBR at different places in the uni-
verse will remain constant during this adiabatic expan-
sion. Then the temporal variation G with respect to
proper time should vanish and as a direct consequence
of that, we have

h2 / 8T/ R !
— -=T'1=0. 46
<r2> () ( dt R (46)
Since T" # 0, then
or’ R ..,
— =T = 0. 47
( 0t R ) (47)
Since H = %, then the Hubble parameter can be writ-
ten as P
= [ = T, 48
7= (%)) (48)

Since COBE, WMAP and other space and ground

T)_
)

based measurements have detected and confirmed anisotropy

in the temperature of the CMBR, this means that the
denominator of the right hand side of the equation (46),
can be measured easily. But the numerator can be
specified after a period of time, fixing the value of the
Hubble parameter.

VII. DISCUSSION AND CONCLUDING RE-
MARKS

Wanas (1989) has used the AP-structure (1) to find a

T \(. R
:<E§®><T_E

T)- (1 _2h2> al _B T' | Thnique pure geometric world model. This model is non-
r 9t R empty and has no particle horizons. This model fixes a
(42) value for k(= —1) i.e. it has no flatness problem. It has
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no singularity at t=0, as it is clear from equation (10).
A further advantage of using pure geometric theories
is that one did not need to impose any condition from
outside the geometry used (e.g. equation of state) in
order to solve the field equations (Wanas 1986; 1989)).

The relation between time and temperature in SCM
is given by (18). This relation has been used to find
the(CMBR) temperature to be 2.95K. This is, some
what, higher than the most recent temperature.

The generalized procedure for studying gradients,
which has been used by Melek (1992), is used to find the
temperature gradient in the SCM. When we assumed
that the CMBR temperature is a function of time only,
the Hubble parameter (H) is given by (34). But all the
quantities on the right hand side of this relation are
nonmeasurable. So this relation can not determine the
numerical value of H, without knowing the gradient of
temperature and its rate of change with respect to time
observationally.

When it is assumed that the temperature is a func-
tion in time and solid angle and that the universe ex-
pands adiabatically, the Hubble parameter is given by
the relation (46). The quantity in the denominator of
the right hand side of (46) may be determined by obser-
vation, while the quantity in the numerator cannot be
determined at time being. Since the explanation of the
small-amplitude of the observed CMBR temperature
fluctuation in the anisotropic universe, definitely need
fine tuning, but it can be calculated after the accumu-
lation of further data, and then the Hubble parameter
can be determined.

It is clear also from the relation (45), that the value
of the Hubble parameter decreases as the temperature
gradient decreases. This result is in agreement with
Bellini (2001) results.

It is worth mentioning that the gradient relation may
give the same form for many of cosmological models
but each result depends essentially on the scale factor
which is fixed by the model under consideration, i.e this
procedure is model dependent.
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