• Title/Summary/Keyword: parallel-fed

Search Result 115, Processing Time 0.024 seconds

Corporate-Series Fed Microstrip Array Antenna with Yagi Elements for 5G

  • Kim, Geun-Sik;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.162-166
    • /
    • 2020
  • The present paper presents an array antenna of a microstrip patch for 5G applications. Four rectangular microstrip patch elements are arranged in parallel and series to form an array antenna. Two insets are made on both sides of each patch element to achieve a wide frequency bandwidth of 23.97-31.60 GHz. To attain a high gain and wider bandwidth, the microstrip patch antenna is fed using series and corporate feeding networks. Further, three director elements on top of the top-most patch elements, and one reflector element at the open end of each patch element, are added. The addition of the Yagi elements improved the overall gain and acquired a higher radiation efficiency throughout the operating frequency bandwidth, with the array antenna achieving a maximum peak gain of 8.7 dB. The proposed antenna is built on a low-loss and low-cost substrate of FR4-eproxy. The proposed antenna design with a simple structure is suitable for Internet of Things and 5G applications.

Comparison of PWM Strategies for Three-Phase Current-fed DC/DC Converters

  • Cha, Han-Ju;Choi, Soon-Ho;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.8 no.4
    • /
    • pp.363-370
    • /
    • 2008
  • In this paper, three kinds of PWM strategies for a three-phase current-fed dc/dc converter are proposed and compared in terms of losses and voltage transfer ratio. Each PWM strategy is described graphically and their switching losses are analyzed. With the proposed PWM C strategy, one turn-off switching of each bridge switch is eliminated to reduce switching losses under the same switching frequency. In addition, RMS current through the bridge switches is lowered by using parallel connection between two bridge switches and thus, conduction losses of the switches are reduced. Further, copper losses of the transformer are decreased due to the reduced RMS current of each transformer's winding. Therefore, total losses are minimized and the efficiency of the converter is improved by using the proposed PWM C strategy. Digital signal processor (DSP: TI320LF2407) and a field-programmable gate array (FPGA: EPM7128) board are used to generate PWM patterns for three-phase bridge and clamp MOSFETs. A 500W prototype converter is built and its experimental results verify the validity of the proposed PWM strategies.

A High-Power Step-up Converter with High Efficiency and Fast Control-to-Output Dynamics

  • Kang, Jeong-il;Roh, Chung-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.78-87
    • /
    • 2001
  • A new high-power step-up based on the two-module parallel-input (PISO) modular dual inductor-fed push-pull converter is proposed. The proposed converter is operated at a constant duty cycle and employs and auxiliary circuit to control the output voltage with a phase-shift between two modules. It shows a high efficiency due to the greatly reduced switch turn-off stress. It also shows a high and linear voltage conversion ratio, low current stress in the output capacitor, and fast control-to-output dynamics. The operation principles and the mathematical models of the proposed converter are presented. Features of the proposed converter are discussed in comparison with the two-module PISO modular dual inductor-fed push-pull converter. Also, experimental results from a 50kHz, 800W, 350 Vdc prototype with an input voltage range of 20-32 Vdc are provided to confirm the validity of the proposed converter. The new converter compares favorably with the conventional counterpart, and is considered well siuted to high-power step-up applications.

  • PDF

A Novel PCCM Voltage-Fed Single-Stage Power Factor Correction Full-Bridge Battery Charger

  • Zhang, Taizhi;Lu, Zhipeng;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.872-882
    • /
    • 2016
  • A novel pseudo-continuous conduction mode (PCCM) voltage-fed single-stage power factor correction (PFC) full-bridge battery charger is proposed in this paper. By connecting a freewheeling transistor in parallel with an input inductor, the PFC cell can operate in the PCCM with a constant duty ratio. Thus, the dc/dc stage can be designed using this constant duty ratio and the restriction on the duty ratio of the PFC cell is eliminated. As a result, the input current distortion is less and the dc bus voltage becomes controllable over the wide output power range of the battery charger. Moreover, the operation principle of the dc/dc stage is designed to be similar to that of a conventional phase-shifted full-bridge converter. Therefore, it is easy to implement. In this paper, the operation of the new converter is explained, and the design considerations of the controller and key parameters are presented. Simulation and experimental results obtained from a 1 kW prototype are given to confirm the operation of the proposed converter.

Effective Oxidant Generation and Ion Precipitation Characteristics of Electrolyzing Cell by Discharge and Space Charge Control (수중 방전과 공간전하제어에 의한 효과적인 산화성물질 발생특성)

  • Kim, Jin-Gyu;Lee, Dae-Hee;Moon, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.9-12
    • /
    • 2000
  • A new type electrolyzing cell with slits on parallel plate electrodes and wire-to-cylinder type electrode system has been proposed instead of the conventional parallel plate type. An investigation was carried out on the effect of the number and size of slits on ion precipitation and oxidant generation characteristics, evidenced by eliminated space charge limiting action and by elevated electric fields in active interelectrode spacing. And it is also studied on the effect of the diameter of wire electrode to ion precipitation and oxidant generation characteristics. With electrode with 48 slits, very oxidants generation water of 3.1 [ppmm] and 19.0 [ppmm] in positive electrode side were obtained with tap water and 0.1 [wt%] NaCl dissolved tap waterfed. In addition, with wire-to-cylinder type electrode system, it is found that oxidant contained water of 0.48 [ppmm] and 5.46 [ppmm] in positive electrode side were obtained with tap water and 0.1 [wt%] NaCl dissolved tap water fed for the case of discharge electrode diameter of 0.5 [$mm{\phi}$]. Consequently, very high ion precipitation and dense oxidant generation characteristics can be realized by having slits on the electrodes of conventional cell as these slits increase the electric fields and decrease the space charge limiting actions in interelectrode spacing.

  • PDF

A High Efficiency Electrolytic Cell by Superposing Pulsed Corona Discharge in Water (수중 펄스코로나 방전을 중첩한 고효율 강전해수 발생장치)

  • 이재용;김진규;정성진;박승록;문재덕
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • A conventional electrolyzing cell has been made by an ion exchange membrane inbetween parallel plate electrodes. A low dc voltage is applied to the electrodes for electrolyzing and the efficiency is remained in low. in this study, a novel electrolyzing cell with a pair of slit-type third electrodes installed inbetween parallel plate electrodes has been proposed and investigated experimentally. And pulse power wa supplied to between each electrodes. This slit type of third electrodes can concentrate the strong electric fields at the every its edges to accelerate the electrolyzing powers, and to generate oxygen bubble discharges for generating oxidants. And moreover the slits eliminate the space charge limiting action and the temperature of the water by leaking out through the slits from electrolyzing region to outside of the main electrode region. As a result, it was found that a strong electorzed water of pH 2.8 and pH 10.5 and oxidants dissolved water of 1 [ppm] in acidic water were obtained with a tap water fed at the electric current of 2 [A], which however were several times higher oxidant and ion concentration quantity compared with the conventional cell.

  • PDF

A Novel Soft-Switching PWM DC/DC Converter with DC Rail Series Switch-Parallel Capacitor Edge Resonant Snubber Assisted by High-Frequency Transformer Parasitic Components

  • Fathy, Khairy;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.377-382
    • /
    • 2005
  • This paper presents two new circuit topologies of DC bus lineside active edge resonant snubber assisted soft-switching PWM full-bridge DC-DC converter acceptable for either utility AC 200V-rms or AC 400V-rms input voltage source. One topology of proposed DC-DC converters is composed of a typical voltage source-fed full-bridge high frequency PWM inverter using DC busline side series power semiconductor switching devices with the aid of a parallel capacitive lossless snubber. All the active power switches in the full-bridge arms and DC busline can achieve ZCS turn-on and ZVS turn-off commutations and the total turn-off switching power losses of all active switches can be reduced for high-frequency switching action. It is proved that the more the switching frequency of full-bridge soft switching inverter increases, the more soft-switching PWM DC-DC converter with a hish frequency transformer link has remarkable advantages for its efficiency and power density as compared with the conventional hard-switching PWM inverter type DC-DC converter

  • PDF

A Novel Three Phase Series-Parallel Resonant Converter Fed DC-Drive System

  • Daigavane, Manoj;Suryawanshi, Hiralal;Khan, Jawed
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.222-232
    • /
    • 2007
  • This paper presents the application of a single phase AC-to-DC converter using a three-phase series parallel (SPRC) resonant converter to variable speed dc-drive. The improved power quality converter gives the input power factor unity over a wide speed range, reduces the total harmonic distortion (THD) of ac input supply current, and makes very low ripples in the armature current and voltage waveform. This soft-switching converter not only possesses the advantages of achieving high switching frequencies with practically zero switching losses but also provides full ranges of voltage conversion and load variation. The proposed drive system is the most appropriate solution to preserve the present separately excited de motors in industry compared with the use of variable frequency ac drive technology. The simulation and experimental results are presented for variable load torque conditions. The variable frequency control scheme is implemented using a DSP- TMS320LF2402. This control reduces the switching losses and current ripples, eliminates the EMI and improves the efficiency of the drive system. Experimental results confirm the consistency of the proposed approach.

Characteristics of nonalcoholic fatty liver disease induced in wistar rats following four different diets

  • Fakhoury-Sayegh, Nicole;Trak-Smayra, Viviane;Khazzaka, Aline;Esseily, Fady;Obeid, Omar;Lahoud-Zouein, May;Younes, Hassan
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.350-357
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased worldwide in parallel with overnutrition characterized by high-fat and high-carbohydrate intake. Our objective was to establish, in 16 weeks, a model of NAFLD in Wistar pathogen-free rats following four dietary types. MATERIALS/METHODS: Forty (6 weeks old) healthy Wistar male rats, weighing an average of 150 g were randomly divided into four groups of ten and assigned a diet with the same quantity (15 g/rat/day), but with different composition. The moderate-fat (MF) group was fed a moderate-fat diet (31.5% fat and 50% carbohydrates), the high-fat (HF) group was fed a fat-rich diet (51% fat), the high-sucrose (HS) group and the high-fructose (HFr) group were fed a carbohydrate-rich diet (61%). The carbohydrate contents of the HS group was composed of 60.3% sucrose while that of the HFr group was composed of 59.3% fructose. RESULTS: At week 16, the HF group had the highest percentage of cells enriched in fat (40%) and the highest weight and liver weight (P < 0.05). The HFr group showed significantly higher levels of serum triglycerides, alanine aminotransferase and adiponectin at week 16 as compared to week 1 (P < 0.05). CONCLUSIONS: The 15 g/rat/day diet composed of 51% fat or 61% carbohydrates enriched mainly in fructose may induce characteristics of NAFLD in rats.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.