• 제목/요약/키워드: parallel vector field

검색결과 57건 처리시간 0.029초

유한체 $GF(2^m)$상의 비트-병렬 곱셈기의 설계 (Design of Bit-Parallel Multiplier over Finite Field $GF(2^m)$)

  • 성현경
    • 한국정보통신학회논문지
    • /
    • 제12권7호
    • /
    • pp.1209-1217
    • /
    • 2008
  • 본 논문에서는 $GF(2^m)$ 상에서 표준기저를 사용한 두 다항식의 곱셈을 비트-병렬로 실현하는 새로운 형태의 비트-병렬 곱셈기를 제안하였다. 곱셈기의 구성에 앞서, 피승수 다항식과 기약다항식의 곱셈을 병렬로 수행 한 후 승수 다항식의 한 계수와 비트-병렬로 곱셈하여 결과를 생성하는 VCG를 구성하였다. VCG의 기본 셀은 2개의 AND 게이트와 2개의 XOR 게이트로 구성되며, 이들로부터 두 다항식의 비트-병렬 곱셈을 수행하여 곱셈 결과를 얻도록 하였다. 이러한 과정을 확장하여 m에 대한 일반화된 회로의 설계를 보였으며, 간단한 형태의 곱셈회로 구성의 예를 $GF(2^4)$를 통해 보였다. 또한 제시한 곱셈기는 PSpice 시뮬레이션을 통하여 동작특성을 보였다. 본 논문에서 제안한 곱셈기는 VCG의 기본 셀을 반복적으로 연결하여 구성하므로, 차수 m이 매우 큰 유한체상의 두 다항식의 곱셈에서 확장이 용이하며, VLSI에 적합하다.

SIZE OF DOT PRODUCT SETS DETERMINED BY PAIRS OF SUBSETS OF VECTOR SPACES OVER FINITE FIELDS

  • Koh, Doowon;Pi, Youngjin
    • 충청수학회지
    • /
    • 제26권4호
    • /
    • pp.853-867
    • /
    • 2013
  • In this paper we study the cardinality of the dot product set generated by two subsets of vector spaces over finite fields. We notice that the results on the dot product problems for one set can be simply extended to two sets. Let E and F be subsets of the d-dimensional vector space $\mathbb{F}^d_q$ over a finite field $\mathbb{F}_q$ with q elements. As a new result, we prove that if E and F are subsets of the paraboloid and ${\mid}E{\parallel}F{\mid}{\geq}Cq^d$ for some large C > 1, then ${\mid}{\Pi}(E,F){\mid}{\geq}cq$ for some 0 < c < 1. In particular, we find a connection between the size of the dot product set and the number of lines through both the origin and a nonzero point in the given set E. As an application of this observation, we obtain more sharpened results on the generalized dot product set problems. The discrete Fourier analysis and geometrical observation play a crucial role in proving our results.

Improved Method for Calculating Magnetic Field of Surface-Mounted Permanent Magnet Machines Accounting for Slots and Eccentric Magnet Pole

  • Zhou, Yu;Li, Huaishu;Wang, Wei;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1025-1034
    • /
    • 2015
  • This paper presented an improved analytical method for calculating the open-circuit magnetic field in the surface-mounted permanent magnet machines accounting for slots and eccentric magnet pole. Magnetic field produced by radial and parallel permanent magnet is equivalent to that produced by surface current according to equivalent surface-current method of permanent magnet. The model is divided into two types of subdomains. The field solution of each subdomain is obtained by applying the interface and boundary conditions. The magnet field produced by equivalent surface current is superposed according to superposition principle of vector potential. The investigation shows harmonic contents of radial flux density can be reduced a lot by changing eccentric distance of eccentric magnet poles compared with conventional surface-mounted permanent-magnet machines with concentric magnet poles. The FE(finite element) results confirm the validity of the analytical results with the proposed model.

Structure Jacobi Operators of Real Hypersurfaces with Constant Mean Curvature in a Complex Space Form

  • Hwang, Tae Yong;Ki, U-Hang;Kurihara, Hiroyuki
    • Kyungpook Mathematical Journal
    • /
    • 제56권4호
    • /
    • pp.1207-1235
    • /
    • 2016
  • Let M be a real hypersurface with constant mean curvature in a complex space form $M_n(c),c{\neq}0$. In this paper, we prove that if the structure Jacobi operator $R_{\xi}= R({\cdot},{\xi}){\xi}$ with respect to the structure vector field ${\xi}$ is ${\phi}{\nabla}_{\xi}{\xi}$-parallel and $R_{\xi}$ commute with the structure tensor field ${\phi}$, then M is a homogeneous real hypersurface of Type A.

Analysis and Experimental Verification of the Moving-Magnet Linear Actuator with Cylindrical Halbach and Radial Array

  • Jang, Seok-Myeong;Park, Jang-Young;Lee, Sung-Ho;Cho, Han-Wook;Jang, Won-Bum
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권4호
    • /
    • pp.179-187
    • /
    • 2003
  • In the machine tool industry, direct drive linear motor technology is of increasing interest as a means to achieve high acceleration and to increase reliability. This paper analyzes and compares the characteristics of the tubular linear actuator with the cylindrical Halbach and radial array, respectively. A tubular linear actuator with cylindrical Halbach array, consisting of parallel magnetized arc segments instead of ideal radial and axial magnetized rings, is manufactured. The magnetic field solutions due to the PMs and to the currents are established analytically in terms of vector potential, using the 2-D cylindrical coordinate system. Motor thrust, flux linkage and back emf are then derived. Thrust characteristics according to such design parameters as magnet height and air gap length are also given. The results are validated extensively by comparison with finite element analysis (FEA). Test results such as thrust measurements are also given to confirm the analysis.

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

그래프 분할 및 다중 프론탈 기법에 의거한 3차원 전자기장의 병렬 해석 (Parallel Computation on the Three-dimensional Electromagnetic Field by the Graph Partitioning and Multi-frontal Method)

  • 강승훈;송동현;최재원;신상준
    • 한국항공우주학회지
    • /
    • 제50권12호
    • /
    • pp.889-898
    • /
    • 2022
  • 본 논문에서는 3차원 전자기장의 병렬 해석 기법을 제안하였다. 시간 조화 벡터 파동 방정식 및 유한요소 기법에 기반한 전자기장 산란 해석이 수행되었으며, 모서리 기반 요소 및 2차 흡수 경계 조건이 도입되었다. 개발한 알고리즘은 유한요소망을 분할한 뒤 각 프로세서에 할당함으로써 요소별 수치적분 및 행렬 조립 과정의 병렬화를 달성하였다. 이때 부영역 생성을 위해 그래프 분할 라이브러리인 METIS가 도입되었다. 대형 희박행렬 방정식의 계산은 다중 프론탈 기법 기반 병렬 연산 라이브러리인 MUMPS를 통해 수행되었다. 개발된 프로그램의 정확도는 Mie 이론해 및 ANSYS HFSS 결과와의 비교를 통해 검증되었다. 또한 사용된 프로세서 수에 따른 가속 지표를 측정하여 확장성을 확인하였다. 완전 전기 도체 구, 등·이방성 유전체 구 및 유도탄 예제 형상에 대한 전자기장 산란 해석이 수행되었다. 개발된 프로그램의 알고리즘은 추후 유한요소 분할 및 합성법에 활용될 예정이며, 더욱 확장된 병렬 연산 성능을 목표하고자 한다.

Procedural Fluid Animation using Mirror Image Method

  • Park, Jin-Ho
    • International Journal of Contents
    • /
    • 제7권4호
    • /
    • pp.1-5
    • /
    • 2011
  • Physics based fluid animation schemes need large computation cost due to tremendous degree of freedom. Many researchers tried to reduce the cost for solving the large linear system that is involved in grid-based schemes. GPU based algorithms and advanced numerical analysis methods are used to efficiently solve the system. Other groups studied local operation methods such as SPH (Smoothed Particle Hydrodynamics) and LBM (Lattice Boltzmann Method) for enhancing the efficiency. Our method investigates this efficiency problem thoroughly, and suggests novel paradigm in fluid animation field. Rather than physics based simulation, we propose a robust boundary handling technique for procedural fluid animation. Our method can be applied to arbitrary shaped objects and potential fields. Since only local operations are involved in our method, parallel computing can be easily implemented.

Analytical Prediction and Experimental Verification of Electromagnetic Performance of a Surface-Mounted Permanent Magnet Motor having a Fractional Slot/Pole Number Combination

  • Hong, Sang-A;Choi, Jang-Young;Jang, Seok-Myeong
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.84-89
    • /
    • 2014
  • This paper presents an analytical prediction and experimental verification of the electromagnetic performance of a parallel magnetized surface-mounted permanent magnet (SPM) motor having a fractional number of slots per pole combination. On the basis of a two-dimensional (2-D) polar coordinate system and a magnetic vector potential, analytical solutions for flux density produced by the permanent magnets (PMs) and stator windings are derived. Then, analytical solutions for back-electromotive force (emf) and electromagnetic torque are derived from these field solutions. The analytical results are thoroughly validated with 2-D nonlinear finite element (FE) analysis results. Finally, the experimental back-emf and electromagnetic torque measurements are presented to test the validity of the analysis.

열탄성 구조물의 자유진동 특성 (Free Vibration Analysis of Thermoelastic Structure)

  • 조희근;박영원;박기영;이경돈
    • 한국정밀공학회지
    • /
    • 제17권12호
    • /
    • pp.201-208
    • /
    • 2000
  • A numerical analysis algorithm for thermally loaded structures has been proposed and compared with the general free vibration approach to determine the characteristics of thermal load effects in vibration structures. The field of numerical inspection includes free vibration analysis, transient heat transfer analysis and thermal stress analysis. The key point of the analysis of thermally loaded structure is the method of parallel time integration between transient heat transfer and free vibration simultaneously. The results of the study demonstrate the computation of the specific total external force vector and stiffness matrix. The proposed analysis method can be applied to both heated and cooled structure vibration analysis.

  • PDF