• Title/Summary/Keyword: parallel tunnel

Search Result 146, Processing Time 0.033 seconds

Evaluation of bonding state of tunnel shotcrete using impact-echo method - numerical analysis (충격 반향 기법을 이용한 숏크리트 배면 접착 상태 평가에 관한 수치해석적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.105-118
    • /
    • 2008
  • Shotcrete is one of the main support materials in tunnelling. Its bonding state on excavated rock surfaces controls the safety of the tunnel: De-bonding of shotcrete from an excavated surface decreases the safety of the tunnel. Meanwhile, the bonding state of shotcrete is affected by blasting during excavation at tunnel face as well as bench cut. Generally, the bonding state of shotcrete can be classified as void, de-bonded, or fully bonded. In this study, the state of the back-surface of shotcrete is investigated using impact-echo (IE) techniques. Numerical simulation of IE technique is performed with ABAQUS. Signals obtained from the IE simulations were analyzed at time, frequency, and time-frequency domains, respectively. Using an integrated active signal processing technique coupled with a Short-Time Fourier Transform (STFT) analysis, the bonding state of the shotcrete can be evaluated accurately. As the bonding state worsens, the amplitude of the first peak past the maximum amplitude in the time domain waveform and the maximum energy of the autospectral density are increasing. The resonance frequency becomes detectable and calculable and the contour in time-frequency domain has a long tail parallel to the time axis. Signal characteristics with respect to ground condition were obtained in case of fully bonded condition. As the ground condition worsens, the length of a long tail parallel to the time axis is lengthened and the contour is located in low frequency range under 10 kHz.

  • PDF

Wind characteristics in the high-altitude difference at bridge site by wind tunnel tests

  • Zhang, Mingjin;Zhang, Jinxiang;Li, Yongle;Yu, Jisheng;Zhang, Jingyu;Wu, Lianhuo
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.547-558
    • /
    • 2020
  • With the development of economy and construction technology, more and more bridges are built in complex mountainous areas. Accurate assessment of wind parameters is important in bridge construction at complex terrain. In order to investigate the wind characteristics in the high-altitude difference area, a complex mountain terrain model with the scale of 1:2000 was built. By using the method of wind tunnel tests, the study of wind characteristics including mean wind characteristics and turbulence characteristics was carried out. The results show: The wind direction is affected significant by the topography, the dominant wind direction is usually parallel to the river. Due to the sheltering effect of the mountain near the bridge, the wind speed and wind attack angle along the bridge are both uneven which is different from that at flat terrain. In addition, different from flat terrain, the wind attack angle is mostly negative. The wind profiles obey exponential law and logarithmic law. And the fitting coefficient is consistent with the code which means that it is feasible to use the method of wind tunnel test to simulate complex terrain. As for turbulence characteristics, the turbulence intensity is also related to the topography. Increases sheltering effect of mountain increases the degree of breaking up the large-scale vortices, thereby increasing the turbulence intensity. Also, the value of turbulence intensity ratio is different from the recommended values in the code. The conclusions of this study can provide basis for further wind resistance design of the bridge.

The Analysis of Fire-Driven Flow and Temperature in The Railway Tunnel with Ventilation (환기를 동반한 철도터널 화재 연기유속 및 온도장 해석)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1794-1801
    • /
    • 2008
  • Fire-driven flow and temperature distribution in a ventilated tunnel was analyzed by Large Eddy Simulation using FDS code. The simulated tunnel is 182m length, 5.4m wide and 2.4m height. A pool fire was located 112m from tunnel entrance and was taken as a heat source of $0.89m^2$. The heat is assumed to be released uniformly throughout the whole simulated time. The fire strength was 2.76MW and the fuel burnt was octane. The parallel computational method was employed to accelerate the computing time and manage the large grid points which is not possible to handle in the one CPU. The total grid points used were $2.4{\times}10^6$ and 7 CPUs were used to calculate the momentum and energy equations. The simulated results were well compared with the experiments.

  • PDF

A Study on the Behavior of Surface Settlement due to the Excavation of Twin TBM Tunnels in the Clay Grounds (점토지반에서 TBM 병렬터널 굴진 시 지표침하거동에 대한 연구)

  • You, Kwangho;Jung, Suntae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.29-40
    • /
    • 2019
  • Mechanized constructions have been frequently increased in soft ground below sea bed or river bed, for urban tunnel construction, and for underpinning the lower part of major structures in order to construct a safer tunnel considering various risk factors during the tunnel construction. However, it is difficult to estimate the subsidence behavior of the ground surface due to excavation and needs to be easily predicted. Thus, in this study, when a twin tunnel is constructed in the soft ground, it is proposed a simpler equation relating to the settlement behavior and a corrected formula applicable to soft ground and large diameter shield tunnels based on the previously proposed theory by Peck (1969). For this purpose, it was analyzed to long-term measurement values such as the amount of maximum settlement, the subsidence range by ground conditions, and interference volume loss due to the parallel construction, etc. As a result, a equation was suggested to predict the amount of maximum settlement in the soft sediment clay ground where is located at the upper part of the excavation site. It is turned out that the proposed equation is more suitable for measurement data in Korea than Peck (1969)'s.

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Study on the Electromagnetic Wave Propagation In the Parallel-Plate Waveguide with the Metamaterial ENZ Tunnel Embedded (Metamaterial ENZ 터널이 포함된 평행 평판 도파관 내 전자기파의 전파 특성에 관한 연구)

  • Kahng, Sung-Tek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.135-140
    • /
    • 2009
  • This paper discusses how to change the electromagnetic waves' property in the cut-off causing discontinuity existing in the guiding structure of the RF passive component by using the metamaterial and elaborates on its principle. Particularly, we find and explain, from the viewpoint of electromagnetics and circuit theories, the so-called tunneling condition that when the segment with an extremely narrow cross-section leading to blockage in the parallel-plate waveguide is given the ENZ(Epsilon Near Zero) for its filling material, the wave starts to propagate through the segment. The analysis method as a transmission-line theory taking the discontinuity and material change into consideration is shown valid through the comparison with other methods for analyzing parallel-plate waveguides, and provides the illustration of the S-parameters and impedance describing the characteristics of the tunneling.

Evaluation of Wake Galloping for Inclined Parallel Cables by Two-Dimensional Wind Testes Tests (2차원 풍동실험을 통한 평행 경사 실린더의 웨이크 갤로핑 평가)

  • Kim, Sun-Joong;Kim, Ho-Kyung;Lee, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.763-775
    • /
    • 2011
  • The wake galloping phenomenon is evaluated for two cylinders via two-dimensional wind tunnel tests. The two cylinders are deployed parallel to the inclination of the vertical plane, which simulates the inclined stay cables of a cable-stayed bridge. The upstream and downstream displacements of the cylinder are observed with varying center distances between the two cylinders. The effect of structural damping on the mitigation of wake galloping is also investigated. The amplitude of the vibration is very sensitive to center distance between the two cylinders. The maximum amplitudes exceededthe allowable limit of the design guidelines for small center distances of less than or equal to six times the diameter of the cylinder. The overall results conformedto the conventional design practice for the wake galloping of parallel cables. It was found, however, that the increase in the damping was not effective in reducing the amplitude of the vibration in the wake galloping phenomenon.

Penetrating behavior of target prawns (Sicyonia penicillata) contacting netting panels in an experimental water tunnel

  • KIM, Yonghae;GORDON, Malcolm S.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.3
    • /
    • pp.193-203
    • /
    • 2018
  • Capture efficiencies of commercial shrimp trawls may improve if their designs took into better account behavioral responses of wild shrimp to approaching cod-end of the trawls. Here we report results of water tunnel-based experimental studies of responses of wild California target prawns to several different near-realistic netting configurations over a range of water velocities (0.3-0.7 m/s). Netting panels were oriented at parallel to water flows (FP) on the bottom of test section, vertical (VT) or diagonal sloping backward (DG), bottom to top. Behavioral responses were recorded by video camera and analyzed frame by frame. Measured responses included rates of penetrating through netting by behavioral features and tail-flip frequencies. Frequencies of prawn passing through the nets increased with flow speed for both orientations and were higher at given speeds for sloped nets. Other behavioral features (e.g., passage head-or tail-first) also varied significantly with water velocities and netting orientation. Interactions of penetrating rates between netting orientations and flow speeds also were significantly dependent, except for prawn size. Additional studies are needed of other shrimp species and at higher water velocities more similar to actual field operations using trawls to improve size selectivity.

Frequency Analysis of the Sweepback Cavity in the Scramjet Engine (스크램제트 엔진 내 후퇴각 공동의 주파수 특성 분석)

  • Jeong, Eun-Ju;Jeung, In-Seuck;O'Byrne, Sean;Houwing, A.F.P.;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.293-296
    • /
    • 2007
  • Using the T3 free-piston shock tunnel in ANU, the cavity frequency and flow characteristics of no mass-injection, inclined mass-injection before the cavity, parallel or reverse mass-injection in the cavity are investigated in the case of Mach 3.7 inflow condition. No mass-injection doesn't have the harmonic frequencies but has high amplitude of pressure spectrum at 10 kHz. Inclined mass-injection attenuates the cavity flow fluctuation as disturbing the shear layer reflection at the trailing edge. Parallel mass-injection flow reflects at the trailing edge of the cavity directly hence, increases the cavity flow fluctuation at high injection pressure.

  • PDF

Monitoring and control of wind-induced vibrations of hanger ropes of a suspension bridge

  • Hua, Xu G.;Chen, Zheng Q.;Lei, Xu;Wen, Qin;Niu, Hua W.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.683-693
    • /
    • 2019
  • In August 2012, during the passage of the typhoon Haikui (1211), large amplitude vibrations were observed on long hangers of the Xihoumen suspension Bridge, which destroyed a few viscoelastic dampers originally installed to connect a pair of hanger ropes transversely. The purpose of this study is to identify the cause of vibration and to develop countermeasures against vibration. Field measurements have been conducted in order to correlate the wind and vibration characteristics of hangers. Furthermore, a replica aeroelastic model of prototype hangers consisting of four parallel ropes was used to study the aeroelastic behavior of hanger ropes and to examine the effect of the rigid spacers on vibration mitigation. It is shown that the downstream hanger rope experiences the most violent elliptical vibration for certain wind direction, and the vibration is mainly attributed to wake interference of parallel hanger ropes. Based on wind tunnel tests and field validation, it is confirmed that four rigid spacers placed vertically at equal intervals are sufficient to suppress the wake-induced vibrations. Since the deployment of spacers on hangers, server hanger vibrations and clash of hanger ropes are never observed.