• 제목/요약/키워드: parallel thrust bearing

검색결과 24건 처리시간 0.027초

평행선 지지식 추력베어링에 관한 연구 (A Study on the Parallel Line Pivoted Pad Thrust Bearing)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • 제15권1호
    • /
    • pp.24-28
    • /
    • 1999
  • This paper describes a new pivoting technique to improve bearing performance in pivoted pad thrust bearings. This new technique adjusts the pivot line in a line pivoted pad thrust bearing to be parallel to the trailing edge of a sector shaped pad. Bearing performance factors such as load carrying capacity, frictional torque and flow rate are numerically investigated for conventional point-pivoted and line-pivoted pads and for the new parallel-line pivoting technique. It is shown that the load carving capacity can be maximized with the new technique.

평행라인 피봇식 추력베어링의 동특성 해석 (Dynamic Characteristics of Parallel tine Pivoted Pad Thrust Bearing)

  • 이경우;김종수;제양규
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.111-118
    • /
    • 1999
  • In this paper, linearized dynamic characteristics of parallel line pivoted pad thrust bearing(hereinafter refer to PLP thrust bearing) was analyzed by perturbation method with inlet pressure. Inlet pressure and excitation frequency irfluence dynamic characteristics of PLP thrust bearing at all operating condition, such as angular pivot position, mass of pad. Therefore, the characteristics is have to analyzed with inlet pressure, excitation frequency, mass of pad and thickness of pad. Otherwise, the analysis is able to estimate the characteristics over or under.

  • PDF

평행라인 피봇식 추력베어링의 동특성 해석 (Dynamic Characteristics of Parallel Line Pivoted Pad Thrust Bearing)

  • 이경우;김종수;제양규
    • Tribology and Lubricants
    • /
    • 제16권4호
    • /
    • pp.274-281
    • /
    • 2000
  • In this paper, linearized dynamic characteristics of parallel line pivoted pad thrust bearing (here-inafter refer to PLP thrust bearing) was analyzed by perturbation method with inlet pressure. Inlet pressure and excitation frequency influence dynamic characteristics of PLP thrust bearing at all operating conditions, such as angular pivot position, mass of pad. Therefore, the characteristics have to be analyzed with inlet pressure, excitation frequency, mass of pad and thickness of pad. Otherwise, the analysis may be over or under estimate.

Surface Topography를 이용한 평행 스러스트 베어링의 혼합윤활 해석 (Mixed Lubrication Analysis of Parallel Thrust Bearing by Surface Topography)

  • 이동길;임윤철
    • Tribology and Lubricants
    • /
    • 제16권2호
    • /
    • pp.106-113
    • /
    • 2000
  • Effects of surface roughness on bearing performances are investigated numerically in this study, especially for the parallel thrust bearing. Although mating surfaces are parallel and separated by thin fluid film, the pressure distribution is formed due to asperities. Model surface is generated numerically with given autocorrelation function and some surface profile parameters. Then the average Reynolds equation is applied to predict the effects of surface roughness between hydrodynamic and mixed lubrication regimes. In this equation, flow factors are defined as correction terms to smooth out high frequency surface roughness. The correlation length is proposed to get the minimum load for the parallel thrust bearing for various sliding conditions.

Surface Topography를 이 용한 평행 스러스트 베어링의 혼합윤활 해석 (An Analysis of Mixed Lubrication in Thrust Bearing by Surface Topography)

  • 이동길;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제30회 추계학술대회
    • /
    • pp.136-145
    • /
    • 1999
  • This paper describes the surface roughness effect in parallel thrust bearing. In mixed lubrication, some contacts will take place between asperities, and partial lubrication will occur. An average Reynolds Equation is utilized to determine effects of surface roughness on partially lubricated contacts. By using an autocorrelation function for the surface profile, surface model is generated numerically Although the two surfaces are parallel in thrust bearing separated by thin film, the pressure peak is formed due to asperites. By means of surface profile parameters, it is shown that which surface is optimal for the parallel thrust bearing.

  • PDF

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제1보 - 딤플깊이의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing: Part 1 - Effect of Dimple Depth)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.305-310
    • /
    • 2009
  • Laser surface texturing (LST) methods are applied recently to generate micro-dimples in machine components having parallel sliding surfaces such as thrust bearings, mechanical face seals and piston rings, etc. And it is experimentally reported by several researchers that the micro-dimpled bearing surfaces can reduce friction force. Until now, however, theoretical results for various dimple parameters are not fully presented. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the effect of dimple depth on the lubrication characteristics of parallel thrust bearing. The results show that the pressure, velocity and density distributions within dimples are highly affected by dimple depths and cavitation conditions. Adoption of micro-dimple on the bearing surface can reduce the friction force highly and its levels are affected by dimple depth. The numerical methods and results can be use in design of optimum dimple characteristics to improve thrust bearing performance.

타원체 딤플로 Texturing한 평행 스러스트 베어링의 윤활특성 (Lubrication Characteristics of Surface Textured Parallel Thrust Bearing with Ellipsoidal Dimples)

  • 박태조;김민규
    • Tribology and Lubricants
    • /
    • 제32권5호
    • /
    • pp.147-153
    • /
    • 2016
  • Friction reduction between machine components is important for improving their efficiency and lifespan. In recent years, surface texturing has received considerable attention as a viable means to enhance the efficiency and tribological performance of highly sliding mechanical components such as parallel thrust bearings, mechanical face seals, and piston rings. In this study, we perform lubrication analysis to investigate the effect of dimple shapes and orientations on the lubrication characteristics of a surface textured parallel thrust bearing. Numerical analysis involves solving the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. We use dimples consisting of hemispherical and different semiellipsoidal orientations for simulation. We compare pressure and streamline distributions, load capacity, friction force, and leakage flowrate for different numbers of dimples and orientations. We find that the dimple shapes, orientations, and their numbers starting from an inlet influence the lubrication characteristics. The results show that partial texturing of the bearing inlet region, and the ellipsoidal dimples with the major axis aligned along the lubricant flow direction exhibit the best lubrication characteristics in terms of higher load capacity and lower friction. The results can be used in the design of optimum dimple characteristics for parallel thrust bearings, for which further research is required.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제3보 - 딤플 수의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 3 - Effect of Number of Dimples)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제27권6호
    • /
    • pp.302-307
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied recently to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, numerical analysis is carried out to investigate the effect of number of dimples on the lubrication characteristics of parallel thrust bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure distributions of present analysis are physically consistent than those obtained from numerical analysis of Reynolds equation. The overall lubrication characteristics are highly affected by number of dimples and their locations. The results can be use in design of optimum dimple characteristics to improve thrust bearing performance and further researches are required.

정렬불량에 따른 틸팅 패드 스러스트 베어링의 운전 성능 한계 검토 (Operating Performance Limitations of Tilting Pad Thrust Bearings Due to Misalignment)

  • 송애희;최성필;김선진
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.82-87
    • /
    • 2020
  • In thrust bearings, the thrust collar and bearing surface need to be parallel to each other to ensure that all pads share the same load. In rotating machines, the shaft system cannot achieve perfect alignment. Misalignment of the thrust collar results in some pads supporting a higher load than others and excessive loads being placed on some pads. Consequently, high loads and high temperatures may occur in the bearing. Thus, in this study, we aim to analytically evaluate the performance of a misaligned non-equalizing direct lubricated tilting pad thrust bearing. We define the oil film thickness of the misaligned thrust bearing using the Byrant angle. Additionally, we calculate the pressure distribution and temperature distribution of the thrust bearing using the generalized Reynolds equation and energy equation. The design limit of the thrust bearing is defined by the load and temperature. Therefore, we evaluate the allowable misalignment angle as the limit of the maximum load and temperature. The analysis results demonstrate that an increase in the speed and load corresponds to a smaller allowable misalignment angle. However, as this is not the same for all thrust bearings, evaluating the allowable misalignment angle at each thrust bearing is essential.

Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제2보 - 딤플 위치의 영향 (Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 2 - Effect of Dimple Location)

  • 박태조;황윤건
    • Tribology and Lubricants
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2010
  • In the last decade, laser surface texturing (LST) has emerged as a viable option of surface engineering. Many problems related with mechanical components such as thrust bearings, mechanical face seals and piston rings, etc, LST result in significant improvement in load capacity, wear resistance and reduction in friction force. It is mainly experimentally reported the micro-dimpled bearing surfaces can reduce friction force, however, precise theoretical results are not presented until now. In this paper, a commercial computational fluid dynamics(CFD) code, FLUENT is used to investigate the lubrication characteristics of a parallel thrust bearing having 3-dimensional micro-dimple. The results show that the pressure, velocity and density distributions are highly affected by the location and number of dimple. The numerical method and results can be use in design of optimum dimple characteristics, and further researches are required.