• Title/Summary/Keyword: parallel tasks

Search Result 186, Processing Time 0.03 seconds

Resource management for moldable parallel tasks supporting slot time in the Cloud

  • Li, Jianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4349-4371
    • /
    • 2019
  • Moldable parallel tasks are widely used in different areas, such as weather forecast, biocomputing, mechanical calculation, and so on. Considering the deadline and the speedup, scheduling moldable parallel tasks becomes a difficulty. Past work majorly focuses on the LA (List Algorithms) or OMA (Optimizing the Middle Algorithms). Different from prior work, our work normalizes execution time and makes all tasks have the same scope in normalized execution time: [0,1], and then according to the normalized execution time, a method is used to search for the reference execution time without considering the deadline of tasks. According to the reference execution time, we get an initial scheduling result based on AFCFS (Adaptive First Comes First Served) policy. Finally, a heuristic approach is used to improve the performance of the initial scheduling result. We call our method HSRET (a Heuristic Scheduling method based on Reference Execution Time). Comparisons to other methods show that HSRET has good performance in AWT (Average Waiting Time), AET (Average Execution Time), and PUT (Percentages of Unfinished Tasks).

Modeling and Verification of Workflows with Various Parallel Dependencies (다양한 병행 종속성을 포함한 워크플로우 모델링 및 검증)

  • 정희택;이도헌
    • The Journal of Information Technology and Database
    • /
    • v.6 no.1
    • /
    • pp.59-72
    • /
    • 1999
  • A study on workflow system as an automated business processing system is done recently. However, it did not consider various dependencies between parallel tasks. Therefore, this paper proposes modeling and verification of workflows with various parallel dependencies. For this, firstly, we propose four dependencies to specify various parallel dependencies between tasks. They contain sequential starts, parallel starts, sequential commits, and parallel commits. Secondly, we suggest a method to specify various parallel dependencies on workflow graph. Thirdly, we propose a verification method to detect contradictions on workflow specifications.

  • PDF

A study on the genetic algorithms for the scheduling of parallel computation (병렬계산의 스케쥴링에 있어서 유전자알고리즘에 관한 연구)

  • 성기석;박지혁
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.166-169
    • /
    • 1997
  • For parallel processing, the compiler partitions a loaded program into a set of tasks and makes a schedule for the tasks that will minimize parallel processing time for the loaded program. Building an optimal schedule for a given set of partitioned tasks of a program has known to be NP-complete. In this paper we introduce a GA(Genetic Algorithm)-based scheduling method in which a chromosome consists of two parts of a string which decide the number and order of tasks on each processor. An additional computation is used for feasibility constraint in the chromosome. By granularity theory, a partitioned program is categorized into coarse-grain or fine-grain types. There exist good heuristic algorithms for coarse-grain type partitioning. We suggested another GA adaptive to the coarse-grain type partitioning. The infeasibility of chromosome is overcome by the encoding and operators. The number of processors are decided while the GA find the minimum parallel processing time.

  • PDF

A Study on Adaptive Parallel Computability in Many-Task Computing on Hadoop Framework (하둡 기반 대규모 작업처리 프레임워크에서의 Adaptive Parallel Computability 기술 연구)

  • Jik-Soo, Kim
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1122-1133
    • /
    • 2019
  • We have designed and implemented a new data processing framework called MOHA(Mtc On HAdoop) which can effectively support Many-Task Computing(MTC) applications in a YARN-based Hadoop platform. MTC applications can be composed of a very large number of computational tasks ranging from hundreds of thousands to millions of tasks, and each MTC application may have different resource usage patterns. Therefore, we have implemented MOHA-TaskExecutor(a pilot-job that executes real MTC application tasks)'s Adaptive Parallel Computability which can adaptively execute multiple tasks simultaneously, in order to improve the parallel computability of a YARN container and the overall system throughput. We have implemented multi-threaded version of TaskExecutor which can "independently and dynamically" adjust the number of concurrently running tasks, and in order to find the optimal number of concurrent tasks, we have employed Hill-Climbing algorithm.

Mathematical Modeling of the Tennis Serve: Adaptive Tasks from Middle and High School to College

  • Thomas Bardy;Rene Fehlmann
    • Research in Mathematical Education
    • /
    • v.26 no.3
    • /
    • pp.167-202
    • /
    • 2023
  • A central problem of mathematics teaching worldwide is probably the insufficient adaptive handling of tasks-especially in computational practice phases and modeling tasks. All students in a classroom must often work on the same tasks. In the process, the high-achieving students are often underchallenged, and the low-achieving ones are overchallenged. This publication uses different modeling of the tennis serve as an example to show a possible solution to the problem and develops and discusses one adaptive task each for middle school, high school, and college using three mathematical models of the tennis serve each time. From model to model within the task, the complexity of the modeling increases, the mathematical or physical demands on the students increase, and the new modeling leads to more realistic results. The proposed models offer the possibility to address heterogeneous learning groups by their arrangement in the surface structure of the so-called parallel adaptive task and to stimulate adaptive mathematics teaching on the instructional topic of mathematical modeling. Models A through C are suitable for middle school instruction, models C through E for high school, and models E through G for college. The models are classified in the specific modeling cycle and its extension by a digital tool model, and individual modeling steps are explained. The advantages of the presented models regarding teaching and learning mathematical modeling are elaborated. In addition, we report our first teaching experiences with the developed parallel adaptive tasks.

A Scheduling Method on Parallel Computation Models with Limited Number of Processors Using Genetic Algorithms (프로세서의 수가 한정되어있는 병렬계산모델에서 유전알고리즘을 이용한 스케쥴링해법)

  • 성기석;박지혁
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.2
    • /
    • pp.15-27
    • /
    • 1998
  • In the parallel processing systems, a compiler partitions a loaded program into tasks, allocates the tasks on multiple processors and schedules the tasks on each allocated processor. In this paper we suggest a Genetic Algorithm(GA) based scheduling method to find an optimal allocation and sequence of tasks on each Processor. The suggested method uses a chromosome which consists of task sequence and binary string that represent the number and order of tasks on each processor respectively. Two correction algorithms are used to maintain precedency constraints of the tasks in the chromosome. This scheduling method determines the optimal number of processors within limited numbers, and then finds the optimal schedule for each processor. A result from computational experiment of the suggested method is given.

  • PDF

Proposition and Evaluation of Parallelism-Independent Scheduling Algorithms for DAGs of Tasks with Non-Uniform Execution Time

  • Kirilka Nikolova;Atusi Maeda;Sowa, Masa-Hiro
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.289-293
    • /
    • 2000
  • We propose two new algorithms for parallelism-independent scheduling. The machine code generated from the compiler using these algorithms in its scheduling phase is parallelism-independent code, executable in minimum time regardless of the number of the processors in the parallel computer. Our new algorithms have the following phases: finding the minimum number of processors on which the program can be executed in minimal time, scheduling by an heuristic algorithm for this predefined number of processors, and serialization of the parallel schedule according to the earliest start time of the tasks. At run time tasks are taken from the serialized schedule and assigned to the processor which allows the earliest start time of the task. The order of the tasks decided at compile time is not changed at run time regardless of the number of the available processors which means there is no out-of-order issue and execution. The scheduling is done predominantly at compile time and dynamic scheduling is minimized and diminished to allocation of the tasks to the processors. We evaluate the proposed algorithms by comparing them in terms of schedule length to the CP/MISF algorithm. For performance evaluation we use both randomly generated DAGs (directed acyclic graphs) and DACs representing real applications. From practical point of view, the algorithms we propose can be successfully used for scheduling programs for in-order superscalar processors and shared memory multiprocessor systems. Superscalar processors with any number of functional units can execute the parallelism-independent code in minimum time without necessity for dynamic scheduling and out-of-order issue hardware. This means that the use of our algorithms will lead to reducing the complexity of the hardware of the processors and the run-time overhead related to the dynamic scheduling.

  • PDF

Parallel task scheduling under multi-Clouds

  • Hao, Yongsheng;Xia, Mandan;Wen, Na;Hou, Rongtao;Deng, Hua;Wang, Lina;Wang, Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.39-60
    • /
    • 2017
  • In the Cloud, for the scheduling of parallel jobs, there are many tasks in a job and those tasks are executed concurrently on different VMs (Visual machines), where each task of the job will be executed synchronously. The goal of scheduling is to reduce the execution time and to keep the fairness between jobs to prevent some jobs from waiting more time than others. We propose a Cloud model which has multiple Clouds, and under this model, jobs are in different lists according to the waiting time of the jobs and every job has different parallelism. At the same time, a new method-ZOMT (the scheduling parallel tasks based on ZERO-ONE scheduling with multiple targets) is proposed to solve the problem of scheduling parallel jobs in the Cloud. Simulations of ZOMT, AFCFS (Adapted First Come First Served), LJFS (Largest Job First Served) and Fair are executed to test the performance of those methods. Metrics about the waiting time, and response time are used to test the performance of ZOMT. The simulation results have shown that ZOMT not only reduces waiting time and response time, but also provides fairness to jobs.

Resource Augmentation Analysis on Deadline Scheduling with Malleable Tasks (가단성 태스크들의 마감시간 스케줄링의 자원추가 분석)

  • Kim, Jae-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2303-2308
    • /
    • 2012
  • In this paper, we deal with the problem of scheduling parallel tasks with deadlines. Parallel tasks can be simultaneously executed on various machines and specially, we consider the malleable tasks, that is, the tasks whose execution time is given by a function of the number of machines on which they are executed. The goal of the problem is to maximize the throughput of tasks completed within their deadlines. This problem is well-known as NP-hard problem. Thus we will find an approximation algorithm, and its performance is compared with that of the optimal algorithm and analyzed by finding the approximation ratio. In particular, the algorithm has more resources, that is, more machines, than the optimal algorithm. This is called the resource augmentation analysis. We propose an algorithm to guarantee the approximation ratio of 3.67 using 1.5 times machines.

Diffusion of software innovation: a Petri Net theory perspective (Petri Net 이론 관점에서 본 소프트웨어 혁신의 확산)

  • Han, Jiyeon;Ahn, Jongchang;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.858-867
    • /
    • 2013
  • Hardware and software field are developed by environment of MPSOC. Also it is still working with economic world and academic world. This study focus on software side and try to classify from parallel programming design world. It can be divided by three; Data, Tasks, and Data flow model. Then we used Petri Net to CUDA and HOPES programmer and found how much they understand parallel programming for each side. We focus on two sides and what is different between their experience. Petri Net is easy to descript parallel program or parallel design pattern for Task, Data, and Hybird. This research can explain how they know and how much they know about parallel programming.