• Title/Summary/Keyword: parallel coordinates

Search Result 75, Processing Time 0.03 seconds

A 2-D Image Camera Calibration using a Mapping Approximation of Multi-Layer Perceptrons (다층퍼셉트론의 정합 근사화에 의한 2차원 영상의 카메라 오차보정)

  • 이문규;이정화
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.487-493
    • /
    • 1998
  • Camera calibration is the process of determining the coordinate relationship between a camera image and its real world space. Accurate calibration of a camera is necessary for the applications that involve quantitative measurement of camera images. However, if the camera plane is parallel or near parallel to the calibration board on which 2 dimensional objects are defined(this is called "ill-conditioned"), existing solution procedures are not well applied. In this paper, we propose a neural network-based approach to camera calibration for 2D images formed by a mono-camera or a pair of cameras. Multi-layer perceptrons are developed to transform the coordinates of each image point to the world coordinates. The validity of the approach is tested with data points which cover the whole 2D space concerned. Experimental results for both mono-camera and stereo-camera cases indicate that the proposed approach is comparable to Tsai's method[8]. Especially for the stereo camera case, the approach works better than the Tsai's method as the angle between the camera optical axis and the Z-axis increases. Therefore, we believe the approach could be an alternative solution procedure for the ill -conditioned camera calibration.libration.

  • PDF

Dynamic modeling and analysis for the stewart platform type of parallel robot (스튜어트 플랫폼형 평행식 로봇의 동역학적 모델링과 해석)

  • 장형배;한창수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.965-970
    • /
    • 1992
  • A dynamic modeling and analysis for the Stewart platform type of parallel robot is addressed. The dynamic modeling is performed based on the method of Kinematic Influence Coefficients(KIC) and transfering of the generalized coordinates. The optimum geometric configurations of the system that minimize the actuating forces at the linear actuator are found for several trajectories by using the optimization technique.

  • PDF

MRV: 3D Visualization Method for Multidimensional data (다차원 데이터의 3차원 가시화 기법)

  • 임강희;이태동;변성욱;정창성
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.637-639
    • /
    • 2000
  • 다차원 정보 가시화(multidimensional information visualization)의 목적은 복잡하고 차원이 많은 정보 데이터(information data)를 이해하기 쉽게 그림이나 도표와 같은 특정한 형식을 이용하여 효과적으로 나타내고 비교하는데 있다. 그동안 제시되어 온 다차원 정보 가시화 기법의 대표적인 것으로는 Scatterplots, Perspective Wall, Parallel Coordinates, Glyph를 들 수 있다. 본 논문에서 소개하는 multidimensional rotating visualizer (MRV)이란 기존의 다차원 정보 가시화 기법들을 보완하여 다차원 데이터(multidimensional data)를 3차원 형식으로 보여주는 방법이다. MRV는 그중에서 특히 Glyph와 Parallel Coordinate의 특징을 혼합하여 화면상에 다차원 정보 데이터를 보여주는 새로운 시도라고 하겠다.

  • PDF

EFFICIENT PARALLEL GAUSSIAN NORMAL BASES MULTIPLIERS OVER FINITE FIELDS

  • Kim, Young-Tae
    • Honam Mathematical Journal
    • /
    • v.29 no.3
    • /
    • pp.415-425
    • /
    • 2007
  • The normal basis has the advantage that the result of squaring an element is simply the right cyclic shift of its coordinates in hardware implementation over finite fields. In particular, the optimal normal basis is the most efficient to hardware implementation over finite fields. In this paper, we propose an efficient parallel architecture which transforms the Gaussian normal basis multiplication in GF($2^m$) into the type-I optimal normal basis multiplication in GF($2^{mk}$), which is based on the palindromic representation of polynomials.

A Fast Poisson Solver of Second-Order Accuracy for Isolated Systems in Three-Dimensional Cartesian and Cylindrical Coordinates

  • Moon, Sanghyuk;Kim, Woong-Tae;Ostriker, Eve C.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2019
  • We present an accurate and efficient method to calculate the gravitational potential of an isolated system in three-dimensional Cartesian and cylindrical coordinates subject to vacuum (open) boundary conditions. Our method consists of two parts: an interior solver and a boundary solver. The interior solver adopts an eigenfunction expansion method together with a tridiagonal matrix solver to solve the Poisson equation subject to the zero boundary condition. The boundary solver employs James's method to calculate the boundary potential due to the screening charges required to keep the zero boundary condition for the interior solver. A full computation of gravitational potential requires running the interior solver twice and the boundary solver once. We develop a method to compute the discrete Green's function in cylindrical coordinates, which is an integral part of the James algorithm to maintain second-order accuracy. We implement our method in the {\tt Athena++} magnetohydrodynamics code, and perform various tests to check that our solver is second-order accurate and exhibits good parallel performance.

  • PDF

Parallelization of Cell Contour Line Extraction Algorithm (세포 외곽선 추출 알고리즘의 병렬화)

  • Lee, Ho Seok;Yu, Suk Hyun;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1180-1188
    • /
    • 2015
  • In this paper, a parallel cell contour line extraction algorithm using CUDA, which has no inner contour lines, is proposed. The contour of a cell is very important in a cell image analysis. It could be obtained by a conventional serial contour tracing algorithm or parallel morphology operation. However, the cell image has various damages in acquisition or dyeing process. They could be turn into several inner contours, which make a cell image analysis difficult. The proposed algorithm introduces a min-max coordinates table into each CUDA thread block, and removes the inner contour in parallel. It is 4.1 to 7.6 times faster than a conventional serial contour tracing algorithm.

An Adaptive Path-Planning for Intelligent AGV System (지능형 무인반송시스템을 위한 적응적 경로설정)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.115-121
    • /
    • 2017
  • In this paper, the intelligent vision system for an effective and intelligent path-planning of an industrial AGV system based on stereo camera system is proposed. The depth information and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the industrial AGV system and the obstacle detected and the 2D path coordinates obtained from the location coordinates, and then the relative distance between the obstacle and the other objects obtained from them. The industrial AGV system move automatically by effective and intelligent path-planning using the obtained 2D path coordinates. From some experiments on AGV system driving with the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the objects is found to be very low value of 2% on average, respectably.

Calculation Effect of GPU Parallel Programing for Planar Multibody System Dynamics (평면 다물체 동역학 해석에서 GPU 병렬 프로그래밍의 계산효과)

  • Jun, C.W.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.12-16
    • /
    • 2012
  • In this paper, the equations of motions for planar multibody dynamics are established for considering the parallel programming based on GPU. Cartesian coordinates are used to formulate the equations of motion and implicit integration method called HHT-alpha is employed. Open chain multibody system is considered for computer simulation. CUDA toolkit is employed for establishing the GPU parallel programming. The exactness of the analysis is verified from the comparison with ADAMS. The results from parallel computing based on GPU are compared with the results from the sequential programming based on CPU in terms of calculation time. The multiple pendulum with bodies and joints is employed for the computer simulation. In the pendulum system that has 290 bodies, the parallel program indicates an improved efficiency of about 25.5 second(15.5% improvement). It is noted that the larger the size of system is, the time efficiency is better.

A Parallel Processing Technique for Large Spatial Data (대용량 공간 데이터를 위한 병렬 처리 기법)

  • Park, Seunghyun;Oh, Byoung-Woo
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Graphical processing unit (GPU) contains many arithmetic logic units (ALUs). Because many ALUs can be exploited to process parallel processing, GPU provides efficient data processing. The spatial data require many geographic coordinates to represent the shape of them in a map. The coordinates are usually stored as geodetic longitude and latitude. To display a map in 2-dimensional Cartesian coordinate system, the geodetic longitude and latitude should be converted to the Universal Transverse Mercator (UTM) coordinate system. The conversion to the other coordinate system and the rendering process to represent the converted coordinates to screen use complex floating-point computations. In this paper, we propose a parallel processing technique that processes the conversion and the rendering using the GPU to improve the performance. Large spatial data is stored in the disk on files. To process the large amount of spatial data efficiently, we propose a technique that merges the spatial data files to a large file and access the file with the method of memory mapped file. We implement the proposed technique and perform the experiment with the 747,302,971 points of the TIGER/Line spatial data. The result of the experiment is that the conversion time for the coordinate systems with the GPU is 30.16 times faster than the CPU only method and the rendering time is 80.40 times faster than the CPU.