• 제목/요약/키워드: parabolic boundary value problem

검색결과 16건 처리시간 0.02초

Lp and W1,p Error Estimates for First Order GDM on One-Dimensional Elliptic and Parabolic Problems

  • Gong, Jing;Li, Qian
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제4권2호
    • /
    • pp.41-57
    • /
    • 2000
  • In this paper, we consider first order generalized difference scheme for the two-point boundary value problem and one-dimensional second order parabolic type problem. The optimal error estimates in $L_p$ and $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) as well as some superconvergence estimates in $W^{1,p}$ ($2{\leq}p{\leq}{\infty}$) are obtained. The main results in this paper perfect the theory of GDM.

  • PDF

OPTIMAL $$\rho$$ PARAMETER FOR THE ADI ITERATION FOR THE SEPARABLE DIFFUSION EQUATION IN THREE DIMENSIONS

  • Ma, Sang-Back
    • 대한수학회논문집
    • /
    • 제10권1호
    • /
    • pp.39-48
    • /
    • 1995
  • The ADI method was introduced by Peaceman and Rachford [6] in 1955, to solve the discretized boundary value problems for elliptic and parabolic PDEs. The finite difference discretization of the model elliptic problem $$ (1) -\Delta u = f, \Omega = [0, 1] \times [0, 1] $$ $$ u = 0 on \delta \Omega $$ with 5-point centered finite difference discretization, with n +2 mesh-points in the x - direction and m + 2 points in the y direction, leads to the solution of a linear system of equations of the form $$ (2) Au = b $$ where A is a matrix of dimension $N = n \times m$. Without loss of generality and for the sake of simplicity, we will assume for the remainder of this paper that m = n, so that $N = n^2$.

  • PDF

QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION

  • Chaouai, Zakariya;El Hachimi, Abderrahmane
    • 대한수학회보
    • /
    • 제57권4호
    • /
    • pp.1003-1031
    • /
    • 2020
  • We consider the following Dirichlet initial boundary value problem with a gradient absorption and a nonlocal source $$\frac{{\partial}u}{{\partial}t}-div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)={\lambda}u^k{\displaystyle\smashmargin{2}{\int\nolimits_{\Omega}}}u^sdx-{\mu}u^l{\mid}{\nabla}u{\mid}^q$$ in a bounded domain Ω ⊂ ℝN, where p > 1, the parameters k, s, l, q, λ > 0 and µ ≥ 0. Firstly, we establish local existence for weak solutions; the aim of this part is to prove a crucial priori estimate on |∇u|. Then, we give appropriate conditions in order to have existence and uniqueness or nonexistence of a global solution in time. Finally, depending on the choices of the initial data, ranges of the coefficients and exponents and measure of the domain, we show that the non-negative global weak solution, when it exists, must extinct after a finite time.

Mode Propagation in X-Ray Waveguides

  • Choi, J.;Jung, J.;Kwon, T.
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.112-117
    • /
    • 2008
  • Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.