DOI QR코드

DOI QR Code

Mode Propagation in X-Ray Waveguides

  • Choi, J. (Photonics Lab, Department of Physics, Dankook University) ;
  • Jung, J. (Photonics Lab, Department of Physics, Dankook University) ;
  • Kwon, T. (Photonics Lab, Department of Physics, Dankook University)
  • Received : 2008.02.21
  • Accepted : 2008.05.28
  • Published : 2008.06.25

Abstract

Single-mode propagation conditions of X-ray waveguides are investigated by numerical calculations in order to understand the importance of waveguide design parameters, such as core thickness and the optical constants of waveguide materials, on the transmission and coherence properties of the waveguide. The simulation code for mode analyzing is developed based on a numerical solution of the parabolic wave equation. The initial boundary value problem is solved numerically using a finite-difference scheme based on the Crank-Nicolson scheme. The E-field intensities in a core layer are calculated at an X-ray energy of 8.0 keV for air and beryllium(Be) core waveguides with different cladding layers such as Pt, Au, W, Ni and Si to determine the dependence on waveguide materials. The highest E-field intensity radiated at the exit of the waveguide is obtained from the Pt cladded beryllium core with a thickness of 20 nm. However, the intensity from the air core waveguide with Pt cladding reaches 64% of the Be-Pt waveguide. The dependence on the core thickness, which is the major parameter used to generate a single mode in the waveguide, is investigated for the air-Pt, and Be-Pt waveguides at an X-ray energy of 8.0 keV. The mode profiles at the exit are shown for the single mode at a thickness of up to 20 nm for the air-Pt and the Be-Pt waveguides.

Keywords

References

  1. G. G. Schroer, and B. Lengeler, “Focusing Hard X-ray to Nanometers Dimensions by Adiabatically Focusing Lenses,” Phys. Rev. Lett., vol. 94, pp.1-4, 2005 https://doi.org/10.1103/PhysRevLett.94.054802
  2. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, and B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, and M. Kuchler, ”Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett., vol. 87, pp. 124103-12410, 2005 https://doi.org/10.1063/1.2053350
  3. A. G. Michette. S. J. Pfauntsch, A. Erko, A, and A. Svintsov,” Nanometer Focusing of X-ray with Modified Reflection Zone Plates,” Opt., vol. 245, pp. 349-253, 2005 https://doi.org/10.1016/j.optcom.2004.10.027
  4. Y. Suzuki, N. Kamijo, S. Tamura, K. Honda, A. Takeuchi, S. Yamamoto, H. Sugiyama, K. Ohsumi, and M. Ando, ”Hard X-ray Micro-beam Experiment at the Tristan Main Ring Test Beam-line of the KEK,” J. Synchrotron Radiat., vol. 4, pp. 60-63, 1997 https://doi.org/10.1107/S0909049596014720
  5. Gung-Chian Yin, Yen-Fang Song, Mau-Tsu Tang, Fu-Rong Chen, Keng S. Liang, Frederick W. Duewer, Michael Feser, Wenbing Yun, and Han-Ping D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett., vol. 89, pp. 221-122, 2006 https://doi.org/10.1063/1.2397483
  6. Weilun Chao, Bruce D. Harteneck, J. Alexander Liddle, Erik H. Anderson and David T. Attwood, “Soft X-ray microscopy at a spatial resolution better than 15 nm,” Nature, vol. 435, pp. 1210-1213, 2005 https://doi.org/10.1038/nature03719
  7. H. C. Kang, J. Maser, G. B. Stephenson, C. Liu, R. Conley, A. T. Macrander, and S. Vogt, “Nanometer Linear Focusing of Hard X Rays by a Multilayer Laue Lens,” Phys. Rev. Lett., vol. 96, pp. 127401- 127404, 2006 https://doi.org/10.1103/PhysRevLett.96.127401
  8. F. Pfeiffer, C. David, J. F. van der Veen, C. Bergemann, “Nanometer focusing properties of Fresnel zone plates described by dynamical diffraction theory,” Phys. Rev., vol. B73, pp. 245331-245340, 2006
  9. J. Buschbeck,1,2 I. Lindemann,1,2 L. Schultz,1,2 and S. Fahler1,“Growth, structure, and texture of epitaxial Fe100.xPdx films deposited on MgO(100) at room temperature: An x-ray diffraction study,” Phys. Rev., vol.B76, pp. 205421-205428, 2007
  10. Christian G. Schroer, “Focusing hard x rays to nanometer dimensions using Fresnel zone plates,” Phys. Rev., B74, pp.033405-033408, 2006 https://doi.org/10.1103/PhysRevB.74.033405
  11. D. H. Bilderback, S. A. Hottman, and D. J. Thiel, “Nanometer Spatial Resolution Achieved in Hard X-ray Imaging and Lave Diffraction Experiments.” Science, vol. 263, pp. 201-203, 1994 https://doi.org/10.1126/science.8284671
  12. Y. P. Feng, S.K. Sinha, E. E. Fullerton, G. Grubel, D. Abemathy, D. P. Siddons, and J. B. Hastings, “X-ray Fraunhofer Diffraction Patterns from a Thin-Film Waveguide,” Appl. phys. Lett., vol. 67, pp. 3647-3649, 1995 https://doi.org/10.1063/1.115346
  13. F. Pfeitter, T. Salditt, P. Hoghoj, I. Anderson, and N. Schell, “X-ray Waveguides with Multiple Guiding Layers,” Phys. Rev., vol. B62, pp. 16939-16943, 2000
  14. C. Brgemann, H. Keymeulen, and J. F. Van der Veen, “Focusing X-ray Beams to Nanometer Dimensions,” Phys. Rev. Lett., vol. 91, pp. 204801-204805, 2003 https://doi.org/10.1103/PhysRevLett.91.204801
  15. F. Pfeiffer, C. David, M. Burghammer, C. Rickel, and T. Salditt, “Two-Dimensional X-ray Waveguides and Point Sources,” Science, vol. 297, pp. 230-234, 2002 https://doi.org/10.1126/science.1071994
  16. Jianwei Miao, Pambos Charalambous, Janos Kirz and David Sayre, “Extending the methodology of X-ray crystallography to allow imaging of micrometre- sized non-crystalline specimens,” Nature, vol. 400, pp. 342-344, 1999 https://doi.org/10.1038/22498
  17. J. Wang, M. J. Beyk and M. Caffrey, “Resonance- Enhanced X-rays in Thin-films,” Science, vol. 258, pp. 775-778, 1992 https://doi.org/10.1126/science.1439784
  18. M. J. Bedzyk, G. M. Bommarito and J. S. Schildkraut “X-ray Standing Waves at a Reflecting Mirror Surface,” phys. Rev. Lett., vol. 62, pp. 1376-1379, 1989 https://doi.org/10.1103/PhysRevLett.62.1376
  19. Christian Fuhse, X-ray Waveguides and Waveguidebased Lensless Imaging, (Dissertation, Georg-August University, Germany, 2006.)
  20. J. W. Thomas, Numerical Partial Differential Equations, (Springer-Verlag, New York, 1997.)

Cited by

  1. X-ray Diffraction from X-ray Waveguide Arrays for Generation of Coherent X-ray vol.14, pp.4, 2010, https://doi.org/10.3807/JOSK.2010.14.4.333