OPTIMAL ρ PARAMETER FOR THE ADI ITERATION FOR THE SEPARABLE DIFFUSION EQUATION IN THREE DIMENSIONS

SANGBACK MA

1. Introduction

The ADI method was introduced by Peaceman and Rachford [6] in 1955, to solve the discretized boundary value problems for elliptic and parabolic PDEs. The finite difference discretization of the model elliptic problem

(1)
$$-\Delta u = f, \qquad \Omega = [0, 1] \times [0, 1]$$

$$u = 0 \qquad \text{on } \delta\Omega$$

with 5-point centered finite difference discretization, with n+2 meshpoints in the x - direction and m+2 points in the y direction, leads to the solution of a linear system of equations of the form

$$(2) Au = b$$

where A is a matrix of dimension $N = n \times m$. Without loss of generality and for the sake of simplicity, we will assume for the remainder of this paper that m = n, so that $N = n^2$.

Writing the discretization in x and y direction into matrices H and V respectively, leads to a linear system of equations

$$(3) (H+V)u=b$$

where both H and V are sparse and possess a special structure. In particular, with suitable reordering, H and V are tridiagonal.

Starting with some initial guess u_0 , the Alternative Direction Implicit procedure for solving (3) generates a sequence of approximations u_i , $i = 1, 2, \ldots$ given by the following algorithm

Received May 2, 1994. Revised October 26, 1994.

Hanyang University, Computer Science Department, Ansan, Kyungki Do, Korea.

1.1. Peaceman-Rachford ADI(PR2-ADI)

- 1. Choose u_0
- 2. For $i = 1, \ldots$, Until Convergence Do

(4)
$$(H + \rho_i I) u_{i+1/2} = -(V - \rho_i I) u_i + b$$

(5)
$$(V + \rho_i I) u_{i+1} = -(H - \rho_i I) u_{i+1/2} + b, \qquad i \ge 0,$$

where u_0 is an arbitrary initial vector and $\{\rho_i, i \geq 0\}$ are positive constants called acceleration parameters, which are chosen to speedup the convergence of this process. Each of Eq. (4) and (5) forms n sets of linear system of order n where the n linear systems are completely decoupled. Furthermore, the matrices H and V could be made tridiagonal with proper reordering. For example, under natural ordering in x direction H is tridiagonal, and with natural ordering in y direction V could be made tridiagonal. This ensures a minimum degree of parallelism of n, which makes PR2-ADI attractive in parallel computations. Also we note that Gaussian elimination method for the tridiagonal linear systems is very effective in terms of costs.

2. Convergence

We combine Eq. (4) and Eq. (5) into the form

$$(6) u_{i+1} = T_{\rho}u_i + v i \ge 0,$$

where

(7)
$$T_{\rho} \equiv (V + \rho I)^{-1} (\rho I - H) (H + \rho I)^{-1} (\rho I - V),$$

and

(8)
$$v = (V + \rho I)^{-1} \{ (\rho I - H)(H + \rho I)^{-1} + I \} b$$

We call T_{ρ} the Peaceman-Rachford matrix. If $\varepsilon_i = u_i - u$ is the error at the *i*-th iteration, then $\varepsilon_{i+1} = T_{\rho}\varepsilon_i$, and in general

(9)
$$\varepsilon_{l} = \left(\prod_{j=1}^{l} T_{\rho_{j}}\right) \varepsilon_{0}, \quad l \geq 1,$$

Optimal ρ parameter for the ADI iteration for the separable diffusion equation 41

where

(10)
$$\prod_{j=1}^{l} T_{\rho_j} \equiv T_{\rho_1} T_{\rho_2} \dots T_{\rho_l}$$

As for the convergence of Peaceman-Rachford iteration, we first consider the *stationary* case, where all the constants ρ_i are equal. Then we have the following theorem[Va62]:

THEOREM 2.1. Let H and V be $N \times N$ Hermitian nonnegative-definite matrices, where at least one of the matrices H and V is positive-definite. Then, for any $\rho > 0$, the stationary PR2-ADI iteration is convergent.

Note that the above result still holds true without the assumption that H and V commute, i.e, HV = VH.

3. Optimal parameters for two dimensions

Assume that HV = VH and further that H and V are diagonalizable, so that H and V have real eigenvalues. Then there exists a set of n linearly independent vectors, $\{v_1, v_2, \ldots, v_n\}$, which are common eigenvectors for H and V. Let v be any such vector, so that

$$Hv = \mu v$$
, $Vv = \nu v$

Then, we have

(11)
$$T_{\rho}v = (V + \rho I)^{-1}(\rho I - H)(H + \rho I)^{-1}(\rho I - V)v,$$

$$= \frac{(\mu - \rho)(\nu - \rho)}{(\mu + \rho)(\nu + \rho)} v.$$

Therefore, in general all the eigenvalues of the operator in (10) are given by

(13)
$$\prod_{i=1}^{l} \frac{(\mu - \rho_i)(\nu - \rho_i)}{(\mu + \rho_i)(\nu + \rho_i)}$$

where μ and ν belong to the set of eigenvalues of H and V with a common eigenvector. Let T_l denote the operator in (10), and let $a \leq \mu$, $\nu \leq b$. Also let $S_p(A)$ denote the spectral radius of the matrix A. Then, we have

(14)
$$S_p(T_l) = \max_{a \le \mu, \ \nu \le b} \left. \prod_{i=1}^l \left| \frac{(\mu - \rho_i)(\nu - \rho_i)}{(\mu + \rho_i)(\nu + \rho_i)} \right| \right.$$

Hence minimizing the spectral radius of T_{ρ} is a minimax problem of finding $\{\rho_1, \ldots, \rho_l\}$ such that (14) is minimized.

For l = 1 we have

THEOREM 3.1. Spectral radius of T_1 is minimized when $\rho=\sqrt{ab}$, with the corresponding $S_p(T_1)=\left(\frac{\sqrt{ab}-a}{\sqrt{ab}+a}\right)^2$.

For the model problem

(15)
$$a = 4\sin^2\left(\frac{\pi}{2(n+1)}\right), \ b = 4\sin^2\left(\frac{n\pi}{2(n+1)}\right)$$

so that $S_p(T_1) = \left(\frac{1-\tan\left(\pi/2(n+1)\right)}{1+\tan\left(\pi/2(n+1)\right)}\right)^2$, which turns out to be that of SOR with optimal $\omega = \frac{2}{1+\sin\left(\pi/(n+1)\right)}$.

For l > 1 the exact solutions are given in terms of elliptic functions [Wa66, To67].

THEOREM 3.2. The sequence of optimal ρ parameters is given by

(16)
$$\rho_{i}^{*} = b \ dn \left(\frac{2(l-i)+1}{2l} K, k \right), \qquad i = 1, \dots, l,$$

where dn(u, k) is an elliptic function defined by

(17)
$$dn(u,k) == \sqrt{1 - k^2 x^2}$$
$$x == \sin \phi.$$

Here, ϕ is implicitly defined by

$$\int_0^{\phi} (1 - k^2 \sin^2 \theta)^{-1/2} d\theta = u$$

$$k = \sqrt{1 - c^2}, \quad c = a/b$$

$$K = \int_0^{\pi/2} (1 - k^2 \sin^2 \theta)^{-1/2} d\theta.$$

4. Three dimensional extension

PR2-ADI iteration in two dimensions depends on the fact that A can be written as A = H + V, where H and V can be made into tridiagonal matrix by a suitable permutation. In three dimensions with the 7-point Laplacian for the second order derivatives A can be written as A = H + V + W, where H, V, and W contain the x-, y-, z-, directional derivatives, respectively. As in two dimensions the matrices H, V, and W can be made tridiagonal by suitable permutations. So writing

$$A = (H + \rho_i I) + (A - H - \rho_i I) = (V + \rho_i I) + (A - V - \rho_i I)$$

= $(W + \rho_i I) + (A - W - \rho_i I),$

we can get the following analogue of Peaceman-Rachford ADI in three dimensions.

4.1. Peaceman-Rachford ADI in three dimensions (PR3-ADI)

(18)
$$(H + \rho_i I) u_{i+1/3} = -(V + W - \rho_i I) u_i + b$$

$$(V + \rho_i I) u_{i+2/3} = -(H + W - \rho_i I) u_{i+1/3} + b$$

$$(W + \rho_i I) u_{i+1} = -(H + V - \rho_i I) u_{i+2/3} + b$$

The convergence behavior of this algorithm is quite different from that of PR2-ADI in two dimension. Assume that H, V, and W are pairwise-commutative, and that

$$a \leq S_p(H), S_p(V), S_p(W) \leq b.$$

For example, with Poisson equation in three dimensions

$$a = 4\sin^2\left(\frac{\pi}{2(n+1)}\right), \quad b = 4\sin^2\left(\frac{n\pi}{2(n+1)}\right)$$

where $N = n^3$.

Let T_{ρ} be the operator associated with PR3-ADI. Then,

(19)
$$T_{\rho} = (W + \rho I)^{-1} (H + V - \rho I)(V + \rho I)^{-1} (H + W - \rho I)(H + \rho I)^{-1} (V + W - \rho I).$$

Since the given equation is separable, HV = VH, HW = WH, and VW = WV and H, V, and W share common set of eigenvectors. Let v be any such vector, and

$$Hv = \mu v, \ Vv = \nu v, Wv = \omega v.$$

Then,

(20)
$$T_{\rho}v = \frac{(\mu + \nu - \rho)(\nu + \omega - \rho)(\mu + \omega - \rho)}{(\mu + \rho)(\nu + \rho)(\omega + \rho)}v.$$

Then, the spectral radius of T_{ρ} is given by

(21)
$$S_p(T_\rho) = \max_{a \le \mu, \nu, \omega \le b} \left| \frac{(\mu + \nu - \rho)(\nu + \omega - \rho)(\mu + \omega - \rho)}{(\mu + \rho)(\nu + \rho)(\omega + \rho)} \right|.$$

This expression is quite different from that in two dimensions as in Eq. (14). While in two dimensions for any positive ρ the spectral radius was smaller than 1, here this is not true.

Now, we are looking for ρ such that (21) becomes smaller than 1. For the following discussion we will assume that $a < \rho < b$, and a small enough so that b/2 > 2a. Now, we introduce several functions. Let

(22)
$$\phi_1(\rho) = \max_{a < \mu, \nu, \omega < b} \left| \frac{\nu + \omega - \rho}{\mu + \rho} \right| ,$$

(23)
$$\phi_2(\rho) = \max_{a \le \mu, \nu, \omega \le b} \left| \frac{\mu + \omega - \rho}{\nu + \rho} \right| ,$$

(24)
$$\phi_3(\rho) = \max_{a \le \mu, \nu, \omega \le b} \left| \frac{\mu + \nu - \rho}{\omega + \rho} \right| ,$$

Optimal ρ parameter for the ADI iteration for the separable diffusion equation 45

and

(25)
$$\psi_1(\rho) = \max_{a \le \mu, \le b} \left| \frac{2\mu - \rho}{\mu + \rho} \right| ,$$

(26)
$$\psi_2(\rho) = \max_{a \le \nu, \le b} \left| \frac{2\nu - \rho}{\nu + \rho} \right| ,$$

(27)
$$\psi_3(\rho) = \max_{a \le \omega, \le b} \left| \frac{2\omega - \rho}{\omega + \rho} \right| .$$

By symmetry, we see

$$\phi_1(\rho) = \phi_2(\rho) = \phi_3(\rho) ,$$

and

$$\psi_1(\rho) = \psi_2(\rho) = \psi_3(\rho).$$

Note that

$$S_p(T\rho) \le \phi_1(\rho)^3 ,$$

and

$$\psi_1(\rho)^3 \leq S_p(T\rho),$$

since the latter is an expression for $S_p(T_\rho)$ over the subset $\{\mu = \nu = \omega\}$. For the ADI iteration to converge, $\psi_1(\rho)$ need to be smaller than 1. So we have $\frac{2b-\rho}{b+\rho} < 1$, which leads to $\rho > b/2$.

THEOREM 4.1. Assume that H, V, and W are pairwise-commutative, and that $\rho > b/2$, and b/2 > 2a. Then,

$$\phi_1(\rho) \equiv \psi_1(\rho)$$

Proof. Note that if a real valued function is monotonically increasing or decreasing, the absolute value of that function on a closed interval takes its maximum at one of the endpoints of that interval. For a given ρ the function $\frac{2\mu-\rho}{\mu+\rho}$ is a monotonically increasing function of μ , so the absolute value of that function takes its maximum at $\mu=a$ or b. So

(28)
$$\psi_{1}(\rho) = \max \left\{ \frac{\rho - 2a}{a + \rho}, \frac{2b - \rho}{b + \rho} \right\}$$

$$= \begin{cases} \frac{2b - \rho}{b + \rho}, & \text{if } \rho < \rho^{*} \\ \frac{\rho - 2a}{a + \rho}, & \text{if } \rho > \rho^{*} \end{cases}$$

where

$$\rho^* = \frac{a + b + \sqrt{(a+b)^2 + 32ab}}{4}.$$

For ϕ_1 the function $\frac{\mu+\nu-\rho}{\mu+\rho}$ is monotonically decreasing in μ and monotonically increasing in ν , so the maximum happens at the boundary $\mu=a$ or b and $\nu=a$ or b. Also note that for $\rho>b/2, \frac{2b-\rho}{b+\rho}>\frac{a+b-\rho}{a+\rho}$. Then,

$$(29)$$

$$\phi_{1}(\rho) = \max\left\{\frac{\rho - 2a}{a + \rho}, \frac{a + b - \rho}{a + \rho}, \frac{a + b - \rho}{b + \rho}, \frac{a + b - \rho}{b + \rho}, \frac{2b - \rho}{b + \rho}\right\}$$

$$= \max\left\{\frac{\rho - 2a}{a + \rho}, \frac{a + b - \rho}{a + \rho}, \frac{2b - \rho}{b + \rho}\right\}$$

$$= \max\left\{\frac{\rho - 2a}{a + \rho}, \frac{2b - \rho}{b + \rho}\right\} \text{ since } \rho > b/2$$

$$= \begin{cases} \frac{2b - \rho}{b + \rho}, & \text{if } \rho < \rho^{*} \\ \frac{\rho - 2a}{a + \rho}, & \text{if } \rho > \rho^{*} \end{cases}$$

By comparing above equations (28) and (29) we complete the proof.

COROLLARY 4.1. With the same hypotheses as in theorem 4.1 the necessary and sufficient condition that the PR3-ADI iteration is convergent is that $\rho > b/2$.

Proof. $S_p(T_\rho) = \phi_1(\rho)^3$, hence if $\rho > b/2$ then $S_p(T_\rho) < 1$.

COROLLARY 4.2. ρ minimizing $S_p(T_\rho)$ is given by $\rho = \rho^*$.

Proof.

$$\frac{\partial \phi_1}{\partial \rho} = -\frac{a+b}{(a+\rho)^2} < 0, \ \rho < \rho^*$$

and

$$\frac{\partial \phi_1}{\partial \rho} = \frac{3a}{(a+\rho)^2} > 0, \quad \rho > \rho^*.$$

So, the minimum is obtained when $\rho = \rho^*$.

If N is large enough then accordingly a will be small so the condition that b/2 > 2a is not unpractical. And the optimum value, ρ^* is not linearly proportional to h, the meshsize, as in two dimensions, but rather **constant** throughout various meshsizes.

The above optimum ρ is actually quite close to b/2, the lower bound for convergence.

5. Conclusion

In three dimensions for the separable diffusion equation the optimal ρ parameter for the stationary case was determined. It turns out to be very close to b/2, the lower bound for the convergence. This might have been one of the important reasons why the ADI has not been so popular in three dimensions. However, as a preconditioner to a Krylov subspace method our result might turn out to be useful, for example, when used with the heuristic in [5].

References

- G. Birkhoff, R. Varga, S. R., and D. Young, Alternating direction implicit methods, Academic Press, New York (1962), 189-273.
- R. Chin, T. Manteuffel, and J. de Pillis, ADI as a preconditioning for solving the convection-diffusion equation, SIAM J. Sci. Stat. 5 (1984).
- J. Douglas, Alternating direction methods for three space variables, Numerische Mathematik 4 (1962), 41-63.
- N. Ellner and E. Wachspress, Alternating direction implicit iteration for systems with Complex Spectra, SIAM J. Numerical Analysis 28 (1991), 859-870.
- Sangback Ma, Parallel block preconditioned Krylov subspace methods for partial differential equations, Ph. D Thesis, Dept of Computer Science, University of Minnesota, Minneapolis, 1993.
- 6. D. Peaceman and H. Rachford, The numerical solution of elliptic and parabolic differential equations, Journal of SIAM. 3 (1955), 28-41.
- Y. Saad and M. Schultz, GMRES: A Generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat 7 (1986).
- 8. Y. Saad,, Krylov subspace methods on supercomputers, SIAM J. Sci. Stat 10 (1989), 1200-12332.
- 9. Y. Saad, Krylov subspace methods in distributed computing environments, Army High Performance Computing Research Center (1992), 92-126.
- G. Starke, Optimal alternating direction implicit parameters for nonsymmetric systems of linear equations, SIAM J. Numerical Analysis 28 (1991), 1431-1445.

- J. Todd, Inequalities of Chebychev, Zolotareff, Cauer and W. B. Jordan, Procedding of Conference at Dayton, Ohio, on Inequalities, Academic Press, New York (1963), 321-328.
- 12. R. Varga, Matrix Iterative Analysis, Prentice-Hall, New York, 1962.
- E. Wachspress, Iterative Solution of Elliptic Systems, Prentice-Hall, New York, 1966.
- 14. J. Watts-III, A conjugate gradient truncated direct method for the iterative solution of the reservoir simulation pressure equation, Society of Petroleum Engineer Journal 21 (1981), 345-353.
- D. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.

Hanyang University Computer Science Department Ansan, Kyungki Do, Korea