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OPTIMAL p PARAMETER FOR THE ADI
ITERATION FOR THE SEPARABLE DIFFUSION
EQUATION IN THREE DIMENSIONS

SANGBACK MA

1. Introduction

The ADI method was introduced by Peaceman and Rachford [6] in
1955, to solve the discretized boundary value problems for elliptic and
parabolic PDEs. The finite difference discretization of the model elliptic
problem

(1) —NAu =f, Q=[0,1] x [0,1]
u =0 on 62

with 5-point centered finite difference discretization, with n + 2 mesh-
points in the z ~ direction and m + 2 points in the y direction, leads to
the solution of a linear system of equations of the form

(2) Au=15b

where A is a matrix of dimension N = n x m. Without loss of generality
and for the sake of simplicity, we will assume for the remainder of this
paper that m = n, so that N = n?.

Writing the discretization in z and y direction into matrices H and
V respectively, leads to a linear system of equations

3) (H+V)u=b

where both H and V are sparse and possess a special structure. In
particular, with suitable reordering, H and V are tridiagonal.

Starting with some initial guess u¢, the Alternative Direction Implicit
procedure for solving (3) generates a sequence of approximations u;,? =
1,2,... given by the following algorithm
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1.1. Peaceman-Rachford ADI(PR2-ADI)

1. Choose ug
2. For : =1,... , Until Convergence Do
(4) (H + pil)uipry2 =~ (V = piD)u; + b
(5) (V +pil)uiys = — (H — pil)uipryz + b, 1 20,

where uo is an arbitrary initial vector and {p:, ¢ > 0} are positive con-
stants called acceleration parameters, which are chosen to speedup the
convergence of this process. Each of Eq. (4) and (5) forms n sets of
linear system of order n where the n linear systems are completely de-
coupled. Furthermore, the matrices H and V could be made tridiagonal
with proper reordering. For example, under natural ordering in z direc-
tion H is tridiagonal, and with natural ordering in y direction V could
be made tridiagonal. This ensures a minimum degree of parallelism of n,
which makes PR2-ADI attractive in parallel computations. Also we note
that Gaussian elimination method for the tridiagonal linear systems is
very effective in terms of costs.

2. Convergence

We combine Eq. (4) and Eq. (5) into the form

(6) uipr = Toui+v 120,

where

(7) Ty =(V+pD)~ (oI — HYH + pI) ™' (pI = V),
and

(8) v=(V+pl) " {(pI = HYH + pI)"" +I}b

We call T, the Peaceman-Rachford matriz. If e; = u; — u is the error
at the i-th iteration, then ¢;1; = T,e;, and in general

{
(9) £ = HT,,,. g0, [>1,
Jj=1



Optimal p parameter for the ADI iteration for the separable diffusion equation 41

where

(10) Iz, =1.7,,...7,

j=1

As for the convergence of Peaceman-Rachford iteration, we first consider
the stationary case, where all the constants pi are equal. Then we have
the following theorem[Va62]:

THEOREM 2.1. Let H and V be N x N Hermitian nonnegative-
definite matrices, where at least one of the matrices H and V is positive-
definite. Then, for any p > 0, the stationary PR2-ADI iteration is con-
vergent.

Note that the above result still holds true without the assumption
that H and V commute, i.e, HV = VH.

3. Optimal parameters for two dimensions

Assume that HV = VH and further that H and V are diagonaliz-
able, so that H and V have real eigenvalues. Then there exists a set
of n linearly independent vectors, {v1,v2,... ,vn}, which are common
eigenvectors for H and V. Let v be any such vector, so that

Hv=ypv, Vv=vv

Then, we have

(11) Tpo =(V + pI) ™ (oI — H)(H + pI) ™ (pI = V),

Tt tp)

Therefore, in general all the eigenvalues of the operator in (10) are given

by

(= pi) (v = p2)
43 | s oy
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where p and v belong to the set of eigenvalues of H and V' with a common
eigenvector. Let T; denote the operator in (10), and let @ < g, v < b
Also let S,(A) denote the spectral radius of the matrix 4. Then, we
have

!

(14) Sp(Th) = max_, 1;[]

(1 — pi)(v — pi)
(14 pi)(v + pi)
Hence minimizing the spectral radius of T, is a minimaz problem of

finding {p1,... ,pi} such that (14) is minimized.
For | =1 we have

THEOREM 3.1. Spectral radius of Ty is minimized when p = Vab,
. I o ab—ar?
with the corresponding S,(T1) = (—\/%T;“ﬁ) .

For the model problem

(15) 0= tsin? (57 ) 0= dsin® (5555

2
so that S,(T1) = (:222&1522135) , which turns out to be that of SOR

. . . . 2
with optimal w = TR G

For I > 1 the exact solutions are given in terins of elliptic func-

tions{Wa66,To67].

THEOREM 3.2. The sequence of optimal p parameters is given by

(16) pi* =b dn (2(—1:-23[&—11{, L> i=1,....1,

where dn(u, k) is an elliptic function defined by

(17) dn(u, k) ==v1— k?z?
r ==sin¢ .

Here, ¢ is implicitly defined by
¢
/ (1- kzsinzﬂ)_l/zdﬁ =u
Jo
k=v1-¢c* c=ua/b

m/2 . _
K:/ (1 - k*sin?6) %8 .

0



Optimal p parameter for the ADI iteration for the separable diffusion equation 43

4. Three dimensional extension

PR2-ADI iteration in two dimensions depends on the fact that A can
be written as A = H + V, where H and V can be made into tridiagonal
matrix by a suitable permutation. In three dimensions with the T-point
Laplacian for the second order derivatives A can be written as A —
H+V + W, where H,V , and W contain the z-, y-, 2-, directional
derivatives, respectively. As in two dimensions the matrices H , V, ‘and
W can be made tridiagonal by suitable permutations. So writing

A=H+pD)+(A~H-p)=(V+pI)+ (A~ V - p,I)
=W +pi) +(A-W — p;I),

we can get the following analogue of Peaceman-Rachford ADI in three
dimensions.

4.1. Peaceman-Rachford ADI in three dimensions(PR3-ADI)

(18) (H +pil)uipas =~ (V+W—pil)u; +b
(V+pi)uivass = — (H+W — pil)uip1ys + b
(Wt pil)uivr == (H+V — pil)ujpo/s + b
The convergence behavior of this algorithm is quite different from
that of PR2-ADI in two dimension. Assume that H V, and W are
pairwise-commutative, and that

a < S,(H),S,(V),S,(W) < b,

For example, with Poisson equation in three dimensions

a = 4sin? (Xn_ﬂ-’i—_ﬁ)’ b= 4sin’ (‘2(:: 1))

where N = n?.
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Let T, be the operator associated with PR3-ADL Then,

(19) T, =W+ pD) "(H+V = pI)(V + pI)™
(H+W = pI)(H + pI)"(V + W - pI).

Since the given equation is separable, HV = VH, HW = WH, and
VW = WYV and H, V, and W share common set of eigenvectors. Let v
be any such vector, and

Hv = pv, Vv = vo, Wy = wv.
Then,

po BV —pvtw—p)utw-p)
(20) T (1 +p) v +p) (w+p)

Then, the spectral radius of T, is given by

C omex (Y mptw—p)iptw —p)
21 5(Ty) = _max (1 + p)v + p)w + p)

This expression is quite different from that in two dimensions as in Eq.
(14). While in two dimensions for any positive p the spectral radius was
smaller than 1, here this is not true.

Now, we are looking for p such that (21) becomes smaller than 1. For
the following discussion we will assume that a < p < b, and a small
enough so that /2 > 2a. Now, we introduce several functions. Let

v+w—p

22 - vre-p
(22) d1(p) = max s l,

_ prw—p
(23) d2(p) = max | — I,
(24) b3(p) = _max —“—i;’)-l ,

a<p,v,w<h w + 1Y
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and

(25) z/zl(p):agl:g,, 2:; pp' ’
(26) ¥a(p) = max, 2:;: |
(27) ¢3(p)=arsn5;§,, 2:;:] :

By symmetry, we see

$1(p) = ¢2(p) = ¢a(p) ,

and
D1(p) = ¥2(p) = ¥a(p).
Note that
Sp(Tp) < ¢1(p)*,
and

¥1(p)’ < Sp(Tp),

since the latter is an expression for Sp(T},) over the subset {y = v = w}.
For the ADI iteration to converge, ¥;(p) need to be smaller than 1. So
we have -zbbff < 1, which leads to p > b/2.

THEOREM 4.1. Assume that H,V, and W are pairwise-commutative,
and that p > b/2, and b/2 > 2a. Then,

$1(p) = ¥1(p)

Proof. Note that if a real valued function is monotonically increasing
or decreasing, the absolute value of that function on a closed interval
takes its maximum at one of the endpoints of that interval. For a given
p the function -2-;%2 1s a monotonically increasing function of u, so the
absolute value of that function takes its maximum at #=aorb So

p—2a 2b-p
28 :max{ , }
(28) Y1(p) atp b1y
BRSO i<yt

£ ifp>pt
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where

a+b+VQa+w2+3mw

pr= 1

For ¢; the function ﬁ%—_'i{—;ﬁ is monotonically decreasing in g and mono-

tonically increasing in v, so the maximum happens at the boundary
f=aorband v=aorb Alsonote that for p > b/2, 22=£ > atb=p

> b+p a-tp
Then,
(29)
—2a a+b—p a+b—p a+b—p 2b—
#1(p) = max{E—=2, 2, 2, b,——£}
at+p a+p b+p b+p " b+p
- —p 2 —
:max{p 2a’a+b p,ub p}
a+tp a+p b+ p
_ p—2a 2b—p .
_.max{a+p, l)+p} since p > b/2
_{ L, ifp<y
e ifp>pt

By comparing above equations (28) and (29) we complete the proof.

COROLLARY 4.1. With the same hypotheses as in theorem 4.1 the
necessary and sufficient condition that the PR3-ADI iteration is conver-
gent is that p > b/2.

Proof. S5,(T,) = 61(p)*, hence if p > b/2 then Sp(T,) < 1.
COROLLARY 4.2. p minimizing S,(T,) is given by p = p*.
Proof.

3(;51 a+ b

- - <0aP<P*
9  (a+p)

and

8(251 N 3a
O  (a+p)

5 >0, p>p"

So, the minimum is obtained when p = p*.
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If N is large enough then accordingly a will be small so the condition
that b/2 > 2a is not unpractical. And the optimum value, p* is not
linearly proportional to h, the meshsize, as in two dimensions, but rather
constant throughout various meshsizes.

The above optimum p is actually quite close to b/2, the lower bound
for convergence.

5. Conclusion

In three dimensions for the separable diffusion equation the optimal
p parameter for the stationary case was determined. It turns out to be
very close to b/2, the lower bound for the convergence. This might have
been one of the important reasons why the ADI has not been so popular
in three dimensions. However, as a preconditioner to a Krylov subspace
method our result might turn out to be useful, for example, when used
with the heuristic in [5].
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