• Title/Summary/Keyword: paper recommendation

Search Result 1,141, Processing Time 0.028 seconds

Design and Implementation of AI Recommendation Platform for Commercial Services

  • Jong-Eon Lee
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.202-207
    • /
    • 2023
  • In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.

Accuracy improvement of a collaborative filtering recommender system using attribute of age (목표고객의 연령속성을 이용한 협력적 필터링 추천 시스템의 정확도 향상)

  • Lee, Seog-Hwan;Park, Seung-Hun
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.2
    • /
    • pp.169-177
    • /
    • 2011
  • In this paper, the author devised new decision recommendation ordering method of items attributed by age to improve accuracy of recommender system. In conventional recommendation system, recommendation order is decided by high order of preference prediction. However, in this paper, recommendation accuracy is improved by decision recommendation order method that reflect age attribute of target customer and neighborhood in preference prediction. By applying decision recommendation order method to recommender system, recommendation accuracy is improved more than conventional ordering method of recommendation.

Effects of the User's Perceived Threat to Freedom and Personalization on Intention to Use Recommendation Services (자유 위협과 개인화에 대한 사용자의 지각이 상품 추천 서비스 수용에 미치는 영향)

  • Lee, Gyu-Dong;Kim, Jong-Uk;Lee, Won-Jun
    • Asia pacific journal of information systems
    • /
    • v.17 no.1
    • /
    • pp.123-145
    • /
    • 2007
  • There are flourishing studies in the acceptance or usage of information systems literature. Most of them have taken the pro - acceptance view. Undesirably, information technologies often provoke users' reactance or resistance. This paper explores one of the negative reactions -psychological reactance. The present paper studies the effects of the users' perception of threatened freedom and personalization degree on intention to use recommendation services. High personalization can be a major motivation for users to accept recommendation systems. However recommendation services are a two-edged sword, which not only provides users the efficiency of decision making but also poses threats to free choice. When people consider that their freedom is reduced or threatened by others, they experience the motivational state to restore the freedom. This motivational state must be considered in understanding usage of information systems, especially personalized services which are designed for persuasion or compliance. This paper empirically investigates the effect of personalization and the psychological reactance on the intention to use information systems in the personalized recommendation context. Users' perception of personalization increases the usefulness of recommendation service while their perception of threat to freedom reduces the intention to use personalized recommendation service. Findings and implications are discussed.

On-line Recommendation Service Algorithm using Human Sensibility Ergonomics (감성공학을 이용한 온라인 추천 서비스 알고리즘)

  • 임치환
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • To be successful in increasingly competitive Internet marketplace, it is essential to capture customer loyalty. This paper deals with an intelligent agent approach to incorporate customer's sensibility into an one-to-one recommendation service in on-line shopping mall. In this paper the focus of interest is on-line recommendation service algorithm for development of Human Sensibility based web agent system. The recommendation agent system composed of seven services including specialized algorithm. The on-line recommendation service algorithm use human sensibility ergonomics and on-line preference matching technologies to tailor to the customer the suggestion of goods and the description of store catalog. Customizing the system's behavior requires the parallel execution of several tasks during the interaction (e.g., identifying the customer's emotional preference and dynamically generating the pages of the store catalog). Most of the present shopping malls go through the catalog of goods, but the future shopping malls will have the form of intelligent shopping malls by applying the on-line recommendation service algorithm.

Quality Indicator Based Recommendation System of the National Assembly Members for Political Sponsors (품질지표기반 정치 후원금 지원을 위한 국회의원 추천시스템 연구)

  • Jung, Hyun Woo;Yoon, Hyung Jun;Lee, See Eun;Park, Sol Hee;Sohn, So Young
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2021
  • Purpose: During 2015-2019, the average amount of political donation to the national assembly members in Korea was 1,000 won per person. Despite its benefits such as receiving tax credits, the donation system has not been actively practiced. This paper aims to promote political donations by suggesting a recommendation system of national assembly members by analysing the bills they proposed. Methods: In this paper, we propose a recommendation system based on two aspects: how similar the newly proposed or ammended bills are to the sponsors' interest (similarity index) and how much effort national assembly members put into those bills (intensity index). More than 25,000 bills were used to measure the recommendation quality index consisted with both the similarity and the intensity indices. Word2vec was used to calculate the similarity index of the bills proposed by the national assembly member to the sponsor's interest. The intensity index is calculated by diving the number of newly proposed or entirely revised bills with the number of senators who took part in those bills. Subsequently, we multiply the similarity index by the intensity index to obtain the recommendation quality index that can assist sponsors to identify potential assembly members for their donation. Results: We apply the proposed recommendation system to personas for illustration. The recommendation system showed an average f1 score about 0.69. The analysis results provide insights in recommendation for donation. Conclusion: n this study, the recommendation system was proposed to promote a political donation for national assembly members by creating the recommendation quality index based on the similarity and the intensity indices. We expect that the system presented in this paper will lower user barriers to political information, thereby boosting political sponsorship and increasing political participation.

A Study on Scientific Article Recommendation System with User Profile Applying TPIPF (TPIPF로 계산된 이용자프로파일을 적용한 논문추천시스템에 대한 연구)

  • Zhang, Lingling;Chang, Woo Kwon
    • Journal of the Korean Society for information Management
    • /
    • v.33 no.1
    • /
    • pp.317-336
    • /
    • 2016
  • Nowadays users spend more time and effort to find what they want because of information overload. To solve the problem, scientific article recommendation system analyse users' needs and recommend them proper articles. However, most of the scientific article recommendation systems neglected the core part, user profile. Therefore, in this paper, instead of mean which applied in user profile in previous studies, New TPIPF (Topic Proportion-Inverse Paper Frequency) was applied to scientific article recommendation system. Moreover, the accuracy of two scientific article recommendation systems with above different methods was compared with experiments of public dataset from online reference manager, CiteULike. As a result, the proposed scientific article recommendation system with TPIPF was proven to be better.

MBTI-based Recommendation for Resource Collaboration System in IoT Environment

  • Park, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • In IoT(Internet of Things) environment, users want to receive customized service by users' personal device such as smart watch and pendant. To fulfill this requirement, the mobile device should support a lot of functions. However, the miniaturization of mobile devices is another requirement and has limitation such as tiny display. limited I/O, and less powerful processors. To solve this limitation problem and provide customized service to users, this paper proposes a collaboration system for sharing various computing resources. The paper also proposes the method for reasoning and recommending suitable resources to compose the user-requested service in small device with limited power on expected time. For this goal, our system adopts MBTI(Myers-Briggs Type Indicator) to analyzes user's behavior pattern and recommends personalized resources based on the result of the analyzation. The evaluation in this paper shows that our approach not only reduces recommendation time but also increases user satisfaction with the result of recommendation.

Effective Recommendation Method Adaptive to Multiple Contexts in Ubiquitous Environments (유비쿼터스 환경에서 다중 상황 적응적인 효과적인 권유 기법)

  • Kwon Joon-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.5
    • /
    • pp.1-8
    • /
    • 2006
  • In ubiquitous environments, recommendation service based on multiple contexts is required. The total amount of information is larger due to the greater number of contexts in multiple context environments. This paper proposes a new effective recommendation method adaptive to multiple contexts in ubiquitous environments. A new method of recommendations in multiple context environments is suggested that uses user's preferences and behavior as a weighting factor. This paper describes the recommendation method, scenario and the experimental results. The results verify that the proposed method's recommendation performance is better than other existing method.

  • PDF

A Contents Recommendation Scheme Based on Collaborative Filtering Using Consumer's Affection and Consumption Type (소비자의 감성과 소비유형을 이용한 협업여과기반 콘텐츠 추천 기법)

  • Choi, In-Bok;Park, Tae-Keun;Lee, Jae-Dong
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.421-428
    • /
    • 2008
  • Collaborative filtering is a popular technique used for the recommendation system, but its performance, especially the accuracy of recommendation, depends on how to define the reference group. This paper proposes a new contents recommendation scheme based on collaborative filtering technique whose reference groups are created by consumer's affection and consumption type in order to improve the accuracy of recommendation. In this paper, joy, sadness, anger, happiness, and relax are considered as the consumer's affection. And, low-utility / low-pleasure, low-utility / high-pleasure, high-utility / low-pleasure, and high-utility / high-pleasure are considered as the consumer's shopping types. Experimental results show that the proposed scheme improves the accuracy of recommendation compared to the recommendation scheme considering neither consumer's affection nor consumption type.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.