• 제목/요약/키워드: paper crane

검색결과 581건 처리시간 0.037초

크레인의 모니터링 운영기법 (The Monitoring Operating Technique of A Crane)

  • 배종일;황용연;안두성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1890-1891
    • /
    • 2007
  • This paper is aimed to handle quick work for all the workers and to improve the productivity by adding more effective content in Crane Monitoring System. The contributing proportion of the increase of port productivity is more increasing concerning not only the port industry, but also all the informations of container crane which is the representative equipment by the rapid increase of the volume of freight of port. The basic of rapid service is the improvement of the productivity, the information of operation as to the productivity of crane for the quick handling within yard and especially the informations of breakdown and to handle breakdown as soon as possible has a great effect on the increase of productivity.

  • PDF

Optimization of Luffing-Tower Crane Location in Tall Building Construction

  • Lee, Dongmin;Lim, Hyunsu;Cho, Hunhee;Kang, Kyung-In
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.420-424
    • /
    • 2015
  • The luffing-tower crane (T/C) is a key facility used in the vertical and horizontal transportation of materials in a tall building construction. Locating the crane in an optimal position is an essential task in the initial stages of construction planning. This paper proposes a new optimization model to locate the luffing T/C in the optimal position to minimize the transportation time. An optimization algorithm, the Harmony Search (HS) algorithm, was used and the results show that HS has high performance characteristics to solve the optimization problem in a short period of time. In a case study, the proposed model offered a better position for T/C than the previous heuristic approach.

  • PDF

통합 비전 시스템을 이용한 무인 크레인 영상 정보 추출 (Extracting Image Information of the unmanned-crane automation system Using an Integrated Vision System)

  • 이지현;김무현;박무훈
    • 한국정보통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.545-550
    • /
    • 2011
  • 본 논문에서는 무인 크레인 시스템 구축을 위하여 산업현장에서 가장 일반적으로 사용되어지는 slab와 coil의 형상 판별 및 3차원 위치 좌표를 산업현장의 환경에 구애받지 않고 정확하게 추출할 수 있는 통합 비전 시스템을 개발하였다. 기존의 비전 시스템은 산업현장의 환경에 영향을 받기 때문에 정확한 물체의 형상 팔별 및 위치 데이터를 추출 할 수 없는 경우가 빈번히 발생하였다. 이러한 단점들을 극복하기 위하여 본 논문에서는 레이저 스캐너와 CCD 카메라를 정합하여 slab와 coil의 형상을 판별하고 3차원 위치좌표를 추출하는 통합 비전 시스템을 제안한다. 본 논문에서 제안한 통합 비전 시스템은 무인 크레인 시스템 구축에 상당한 도움이 될 것으로 기대 된다.

어장작업 개선을 위한 소형 크레인 조작제어장치 개발 (Development of Small Crane Control System to Improve Fishery Operations)

  • 정헌;이상웅
    • 한국전자통신학회논문지
    • /
    • 제9권5호
    • /
    • pp.625-632
    • /
    • 2014
  • 건설현장에서의 포크레인과 같이 어장 작업을 위한 수산작업용 조력기로서 어장관리기가 필수적이다. 기존의 어장관리기의 제어방식이 ON/OFF제어에 기반을 두고 있어 급조작시 집게에 매달린 양식제품이 흔들리는 현상의 문제점이 발생되고 있다. 이는 심할 경우 작업자에게 위협을 하는 경우도 발생되고 있다. 본 논문에서는 흔들림을 감소시킬 수 있는 마이컴 기반의 조작제어장치를 개발한다. 본 논문에서는 어장관리기의 유압제어 특성, 제어기의 설계 방법 그리고 제어 알고리즘 개발에 대하여 기술한다. 제안하는 시스템을 어장관리기에 적용하여 개선 전 후 흔들림의 개선정도의 성능평가를 수행한다.

자동화크레인의 가속도 특성에 관한 연구 (A Study on Acceleration Characteristics for Automated Rail Mounted Crane)

  • 김환성;김명규;짠록황선
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2009년도 추계학술대회
    • /
    • pp.215-216
    • /
    • 2009
  • 종래의 크레인에서는 생산성 향상을 목적으로 최단 시간내에 작업을 행하는 최단시간제어기법이 사용되었으며, 이률 위해서 목표 위치에 대해서 속도 패턴을 생성하고 속도 패턴에 따라 제어를 행하고 있다. 그러나 최근 항만에서도 녹색항만정책에 의해 에너지의 고효율 사용법이 논의되어 왔다. 본 연구에서는 ARMC에 대한 에너지 효율을 검토하기 위한 기초연구로서 ARMC의 3D 모델링을 행하며 ARMC의 가속도 특성에 대하여 분석하도록 한다. 먼저, ARMC의 비선형방정식을 통한 3D 상태방정식을 유도하였으며, 시뮬레이션을 통한 ARMC의 가속도 특성을 고찰하여 이상적인 경제적 운전 방법에 대해서 고찰한다.

  • PDF

주행상태에서의 가이드라인 계측 시스템 개발에 관한 연구 (A Study on the Development of Guide Line Measurement System in the Driving Condition)

  • 김영복
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.91-96
    • /
    • 2011
  • The handling ability of containers at the terminal strongly depends on the performance of the cargo handling system such as RTGC(Rubber Tired Gantry Crane) and RMGC(Rail Mounted Gantry Crane). This paper introduces a guide line measurement system on the operating condition, in which two camera are installed to detect the guide line. Because the line tracking is the basic technique for control system design of RTGC, it is necessary to develop a useful and reliable measurement system. If the displacement and angle of the RTGC relative to a guide line as the trajectory to follow is obtained, the position of RTGC is automatically calculated. Therefore, in this paper, a camera-based measurement system is introduced. The proposed measurement system is robust against light fluctuation and cracks of the guide line. This system consists of two camera and a PC which are installed at the lower side of the RTGC. Two edges of the guide line are detected from an input image taken by the cameras in the moving state, and these positions are determined in a Hough parameter space by using the Hough transformation method. From the experimental results, the accuracy and usefulness of the proposed system is evaluated by comparing other instruments.

Application of Coefficient Diagram Method for Multivariable Control of Overhead Crane System

  • Tantaworrasilp, A.;Benjanarasuth, T.;Ngamwiwit, J.;Komine, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2240-2245
    • /
    • 2003
  • In this paper, the controller design by coefficient diagram method (CDM) for controlling the trolley position, load-swing angle and hoisting rope length of the overhead crane system simultaneously is proposed. The overhead crane system is a MIMO system consisting of two inputs and three outputs. Its mathematical model is nonlinear with coupling characteristics. This nonlinear model can be approximated to obtain a linear model where the first input mainly affects the trolley position and the load-swing angle while the second input mainly affects the hoisting rope length. In order to utilize the CDM concept for assigning the controllers, namely PID, PD and PI controllers separately, the model is approximated to be three transfer functions in accordance with trolley position, the load-swing angle and the hoisting rope length controls respectively. The satisfied performances of the overhead crane system controlled by the these controllers and fast rejection of the disturbance effect occurred at the trolley position are shown by simulation and experimental results.

  • PDF

중량물의 동적 거동에 미치는 크레인 붐(boom)의 탄성 영향 분석 (Analysis of an Elastic Boom Effect on the Dynamic Response of a Cargo)

  • 박광필;차주환;이규열
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.421-429
    • /
    • 2010
  • In this paper, in order to analyze the dynamic response of a floating crane when it lifts a heavy cargo, the boom of the floating crane is considered as an elastic beam. The boom is divided into elements based on finite element formulation and the floating frame of reference formulation and nodal coordinates are employed to model the boom as a flexible body. As an extension of the previous study, in order to consider spatial motion in waves, the coupled equations of motions of the 6 degree of freedom (DOF) floating crane and 6 DOF cargo are developed based on the flexible multibody system dynamics. The 3 dimensional deformation of the elastic boom is considered with 18 DOF. The dynamic simulation of the floating crane and the cargo is performed under regular wave conditions with various cargo weights. Finally, the effects of the elastic boom on lifting cargo are discussed by comparing the simulation results between the elastic boom and a rigid boom.

슬립을 고려한 트랜스퍼 크레인의 주행제어에 관한 연구 (A Study on the Tracking Control of a Transfer Crane with Tire Slip)

  • 정지현;이동석;김영복
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1212-1219
    • /
    • 2010
  • The most important thing in the container terminal is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the technical trends and environment of the automated container terminal, it is necessary that the systems for cargo handling are equipped with more intelligent control technologies. To cope with this tendency, from the middle of the 1990's, the automated RMGC (Rail-Mounted Gantry Crane) and RTGC (Rubber-Tired Gantry Crane) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. If we want to obtain more efficient handling performance, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control problems must be considered in the control system design and application process. Considering these problems, in this paper, the system modelling with the tire slip and a tracking control approach are proposed. Especially, we design the tracking control system based on the 2DOF servosystem design approach to cope with undesirable disturbance input. The experiment results show the desirable performance and usefulness of the designed control system.

자동 트랜스퍼 크레인을 위한 컨테이너 흔들림 장치 (Anti-Sway System for Automated Transfer Crane)

  • 박찬훈;박경택;김두형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1743-1746
    • /
    • 2003
  • Automated Container Terminals have been being developed over the world for many recent years and more and more countries get interested in it because the amount of containers exported or imported is steeply increasing. Existed Container Terminals were not designed to control this kind of heavily many containers. They would face many structural problems soon or later, although they have managed to do well until now. One of the most important things in developing Automated Container Terminal is to develop the equipment able to transfer the awfully many containers. Those are maybe Automated Transfer Cranes, Automated Guided Vehicles, and Automated Quay-Side Cranes. The word "Automated" means the equipment is operated without drivers and those equipments are able to work without taking any break. Through the researches on the existed transfer cranes, authors decided that the structure of existed transfer cranes is not proper to swift and fast transfer and it′s not impossible to handle so many containers in limited time. Therefore authors have been studying on the proper structure of the Automated Container Crane for past several years and a new type of transfer crane has been developed. Design concepts and control methods of a new crane will be introduced in this paper.

  • PDF