• 제목/요약/키워드: panel zone deformation

검색결과 28건 처리시간 0.027초

패널존과 점성감쇠기를 고려한 강골조 구조물의 내진 설계 모델 (Seismic Design of Steel Frame Model Considering the Panel Zone and Viscous Dampers)

  • 박순응;이택우
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.87-94
    • /
    • 2020
  • The present study is aimed to calculate the optimal damping according to the seismic load on the structure with a non-seismic design to perform structure analysis considering the deformation of structural joint connection and panel zone; to develop design program equipped with structural stability of the steel frame structures reinforced with the panel zone and viscous dampers, using the results of the analysis, in order to systematically integrate the seismic reinforcement of the non-seismic structures and the analysis and design of steel frame structures. The study results are as follows: When considering the deformation of the panel zone, the deformation has been reduced up to thickness of the panel double plate below twice the flange thickness, which indicates the effect of the double plate thickness on the panel zone, but the deformation showed uniform convergence when the ration is more than twice. The SMRPF system that was applied to this study determines the damping force and displacement by considering the panel zone to the joint connection and calculating the shear each floor for the seismic load at the same time. The result indicates that the competence of the damper is predictable that can secure seismic performance for the structures with non-seismic design without changing the cross-section of the members.

선형요소를 사용하여 판넬존 변형을 고려한 해석 모텔 (The Analytical Model Considering the Deformation of Panel Zone with Linear Element)

  • 조소훈;박찬헌;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.293-300
    • /
    • 2004
  • As the structure is taller and its member is larger, the effect of the deformation of Panel zone on the displacement of structure becomes larger. The analysis using the centerline dimensions in the steel moment frame structure can not consider the accurate effect of panel ton And the finite element analysis using infinitesimal solid and shell element is impractical for the total tall building structure. Therefore, this paper proposes the analytical model using linear element in order to be able to evaluate the reasonable deformation of panel zone. the proposed analytical model makes the analysis of the building structure simple and ease because it uses the only linear elements. In addition it can easily incorporate the various parameters affecting the deformation of panel zone. In order to prove the validith of the prosed analytical model, the analysis result using the proposed analytical model is compared with the result using finite element analysis with shell element

  • PDF

Box단면 접합부의 Panel Zone 거동특성 (Panel Zone Behavior of Steel Box Connections)

  • 황원섭
    • 한국강구조학회 논문집
    • /
    • 제9권4호통권33호
    • /
    • pp.683-695
    • /
    • 1997
  • 본 연구는 강제 라멘교각 접합부 panel zone의 전단거동특성에 대하여 검토한 것이다. 여기에서는 접합부 시험체 20개에 대한 재하실험 결과와 3가지의 FEM해석 모델에 대한 결과를 제시 하였다. 이와같은 실험및 해석결과를 비교 검토한 결과, panel zone의 강도와 변형 성능은 단면적비와 전단좌굴등에 의하여 감소하는 경향을 보이고 있음을 알 수 있었다. 따라서 본 연구에서는 이상의 결과를 기초로 panel zone의 강도와 변형성능에 대한 새로운 평가식을 제안하였으며, 또한 기존의 라멘교각 접합부에 대한 변형성능에 관해서 검토하였다.

  • PDF

A mathematical steel panel zone model for flanged cruciform columns

  • Saffari, Hamed;Sarfarazi, Sina;Fakhraddini, Ali
    • Steel and Composite Structures
    • /
    • 제20권4호
    • /
    • pp.851-867
    • /
    • 2016
  • Cruciform sections are an appropriate option for columns of orthogonal moment resisting frames for equal bending strength and stiffness about two main axes and the implementation is easier for continuity plates. These columns consist of two I-shaped sections, so that one of them is cut out in middle and two generated T-shaped sections be welded into I-shaped profile. Furthermore, in steel moment frames, unbalance moment at the beam-column connection leads to shear deformation in panel zone. Most of the obtained relations for panel zone strength derived from experimental and analytical results are on I-shaped columns with almost thin flanges. In this paper, a parametric study has been carried out using Finite Element Method (FEM) with effective parameters at the panel zone behavior. These parameters consist of column flange thickness, column web thickness, and thickness of continuity plates. Additionally, a mathematical model has been suggested to determine strength of cruciform column panel zone and has been shown its accuracy and efficiency.

Cyclic test for beam-to-column abnormal joints in steel moment-resisting frames

  • Liu, Zu Q.;Xue, Jian Y.;Peng, Xiu N.;Gao, Liang
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1177-1195
    • /
    • 2015
  • Six specimens are tested to investigate the cyclic behavior of beam-to-column abnormal joints in steel moment-resisting frames, which are designed according to the principle of strong-member and weak-panel zone. Key parameters include the axial compression ratio of column and the section depth ratio of beams. Experimental results indicate that four types of failure patterns occurred during the loading process. The $P-{\Delta}$ hysteretic loops are stable and plentiful, but have different changing tendency at the positive and negative direction in the later of loading process due to mechanical behaviors of specimens. The ultimate strength tends to increase with the decrease of the section depth ratio of beams, but it is not apparent relationship to the axial compression ratio of column, which is less than 0.5. The top panel zone has good deformation capacity and the shear rotation can reach to 0.04 rad. The top panel zone and the bottom panel zone don't work as a whole. Based on the experimental results, the equation for shear strength of the abnormal joint panel zone is established by considering the restriction of the bottom panel zone to the top panel zone, which is suitable for the abnormal joint of H-shaped or box column and beams with different depths.

Strengthening of the panel zone in steel moment-resisting frames

  • Abedini, Masoud;Raman, Sudharshan N.;Mutalib, Azrul A.;Akhlaghi, Ebrahim
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.327-342
    • /
    • 2019
  • Rehabilitation and retrofitting of structures designed in accordance to standard design codes is an essential practice in structural engineering and design. For steel structures, one of the challenges is to strengthen the panel zone as well as its analysis in moment-resisting frames. In this research, investigations were undertaken to analyze the influence of the panel zone in the response of structural frames through a computational approach using ETABS software. Moment-resisting frames of six stories were studied in supposition of real panel zone, different values of rigid zone factor, different thickness of double plates, and both double plates and rigid zone factor together. The frames were analyzed, designed and validated in accordance to Iranian steel building code. The results of drift values for six stories building models were plotted. After verifying and comparing the results, the findings showed that the rigidity lead to reduction in drifts of frames and also as a result, lower rigidity will be used for high rise building and higher rigidity will be used for low rise building. In frames with story drifts more than the permitted rate, where the frames are considered as the weaker panel zone area, the story drifts can be limited by strengthening the panel zone with double plates. It should be noted that higher thickness of double plates and higher rigidity of panel zone will result in enhancement of the non-linear deformation rates in beam elements. The resulting deformations of the panel zone due to this modification can have significant influence on the elastic and inelastic behavior of the frames.

A new steel panel zone model including axial force for thin to thick column flanges

  • Mansouri, Iman;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제16권4호
    • /
    • pp.417-436
    • /
    • 2014
  • During an earthquake, steel frame columns can be subjected to high axial forces combined with inelastic rotation demand resulting from story drift. Generally, the whole beam or component can be represented with one element. In elasto-plastic analysis, subdivision is necessary if the plastic deformation occurs within two ends of beams. If effects of the joint panel are necessarily considered in the analysis, the joint panel should be represented with an independent element. It is a special element to represent the shear deformation of the joint panel in the beam-column connection zone. Several analytical models for panel zone (PZ) behavior exist, in terms of shear force-shear distortion relationships. Among these models, the Krawinkler PZ model is the most popular one which is used in the AISC code. Some studies have pointed out that Krawinkler's model gives good results for the range of thin to medium column flanges thickness. This paper, introduces a new model to estimate the response of shear force-shear distortion for the PZ including column axial force. The model is applicable to both thin and thick column flange. To achieve an appropriate PZ mathematical model first, the effects of PZ strength and stiffness on connection response are parametrically studied using finite element models. More than one thousand and four-hundred beam-column connections are included in the parametric study, with varied parameters; then based on analytical results a simple mathematical model is presented. A comparison between the results of proposed method herein with FE analyses shows the average error especially in thick column flange is significantly reduced which demonstrates the accuracy, efficiency, and simplicity of the proposed model.

A study on an efficient prediction of welding deformation for T-joint laser welding of sandwich panel PART I : Proposal of a heat source model

  • Kim, Jae Woong;Jang, Beom Seon;Kim, Yong Tai;Chun, Kwang San
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권3호
    • /
    • pp.348-363
    • /
    • 2013
  • The use of I-Core sandwich panel has increased in cruise ship deck structure since it can provide similar bending strength with conventional stiffened plate while keeping lighter weight and lower web height. However, due to its thin plate thickness, i.e. about 4~6 mm at most, it is assembled by high power $CO_2$ laser welding to minimize the welding deformation. This research proposes a volumetric heat source model for T-joint of the I-Core sandwich panel and a method to use shell element model for a thermal elasto-plastic analysis to predict welding deformation. This paper, Part I, focuses on the heat source model. A circular cone type heat source model is newly suggested in heat transfer analysis to realize similar melting zone with that observed in experiment. An additional suggestion is made to consider negative defocus, which is commonly applied in T-joint laser welding since it can provide deeper penetration than zero defocus. The proposed heat source is also verified through 3D thermal elasto-plastic analysis to compare welding deformation with experimental results. A parametric study for different welding speeds, defocus values, and welding powers is performed to investigate the effect on the melting zone and welding deformation. In Part II, focuses on the proposed method to employ shell element model to predict welding deformation in thermal elasto-plastic analysis instead of solid element model.

철골 모멘트 연결부의 구조특성에 따른 지진 거동 연구 (Seismic Behavior of Steel Moment Connections with Different Structural Characteristics)

  • 조창빈
    • 한국안전학회지
    • /
    • 제17권2호
    • /
    • pp.76-84
    • /
    • 2002
  • The seismic behaviors of steel moment connections with different structural characteristics are investigated. The rupture index, which represents the fracture potential, is adopted to study the effect of concrete slab and the relative strength between the coin the beam, and Panel zone on the ductility of connections. The results show that the presence of slab increases the beam strength, imposes constraint near the beam top flange, and consequently, induces concentrated deformation near the beam access hall, which reduces the ductility of the connection. The total deformation capacity of the connection depends not only on the beam but also on the column and panel zone. Therefore, the detrimental slab effects and the relative strength should be considered in the seismic design of the connection.

패널영역의 변형을 고려한 강뼈대 구조물의 이산화 최적설계 (Discrete Optimum Design of Steel Framed Structures Subjected to Deformed of Panel Zone)

  • 박순응;박문호;권민호;장준호
    • 한국전산구조공학회논문집
    • /
    • 제15권2호
    • /
    • pp.315-327
    • /
    • 2002
  • 본 연구의 목적은 패널영역을 고려한 2차 탄소성힌지해석을 이용한 평면 강뼈대구조물의 이산화 최적설계알고리즘을 개발하는데 있다. 강뼈대구조물의 일반적인 해석은 구조물의 거동에서 패널영역 변형의 효과를 고려하지 않는다. 최적설계의 목적함수는 강뼈대구조물의 중량을 함수로 취하였으며, 제약조건식은 하중저항계수법(AISC-LRFD1994)시방규정을 근거로 하였다. 강뼈대구조물의 해석에서 현실적인 모델 사용의 중요성을 입증하기 위해 접합부 모델에서 패널영역을 고려하지 않은 수치해석과의 비교로부터 이 모델의 타당성이 판명되어진다. 개발된 알고리즘은 범용 프로그램인 SAP2000의 치적설계결과와 비교하여 본 연구에서 개발된 최적화 알고리즘의 타당성을 입증하였다. 이 연구의 결과는 일반적인 강뼈대구조물의 설계방법보다 패널영역의 거동을 고려한 최적설계 알고리즘이 더 경제적인 설계라는 것을 나타내었다.