• Title/Summary/Keyword: packet priority

Search Result 243, Processing Time 0.021 seconds

Space and Time Priority Queues with Randomized Push-Out Scheme (확률적 밀어내기 정책을 가지는 공간-시간 우선순위 대기행렬)

  • Kilhwan Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.57-71
    • /
    • 2023
  • In this study, we analyze a finite-buffer M/G/1 queueing model with randomized pushout space priority and nonpreemptive time priority. Space and time priority queueing models have been extensively studied to analyze the performance of communication systems serving different types of traffic simultaneously: one type is sensitive to packet delay, and the other is sensitive to packet loss. However, these models have limitations. Some models assume that packet transmission times follow exponential distributions, which is not always realistic. Other models use general distributions for packet transmission times, but their space priority rules are too rigid, making it difficult to fine-tune service performance for different types of traffic. Our proposed model addresses these limitations and is more suitable for analyzing communication systems that handle different types of traffic with general packet length distributions. For the proposed queueing model, we first derive the distribution of the number of packets in the system when the transmission of each packet is completed, and we then obtain packet loss probabilities and the expected number of packets for each type of traffic. We also present a numerical example to explore the effect of a system parameter, the pushout probability, on system performance for different packet transmission time distributions.

Hierarchical Priority Trie for Efficient Packet Classification (효율적인 패킷 분류를 위한 계층 우선순위 트라이)

  • Chu, Ha-Neul;Lim, Hye-Sook
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.15-16
    • /
    • 2007
  • In order to provide value-added services, next generation routers should perform packet classification for each incoming packet at wire-speed. In this paper, we proposed hierarchical priority trio (Hptrie) for packet classification. The proposed scheme improves the search performance and the memory requirement by replacing empty internal nodes in ordinary hierarchical trio with priority nodes which are the nodes including the highest priority rule among sub-trie nodes.

  • PDF

Priority Service Algorithm of Packet Switch for Improvement in QoS

  • Jung, Hae-Young;Lee, Heung-Jae;Choe, Jin-Kyu;Lee, Kyou-Ho
    • Journal of IKEEE
    • /
    • v.7 no.2 s.13
    • /
    • pp.181-187
    • /
    • 2003
  • In high speed packet switching network, packet service by priority scheme prefer to QoS. Efficient packet service according to the priority scheme in high speed packet switch is a key point. Therefore development of priority service algorithm in the packet switch is very important. In this paper, we proposed W-iSLIP algorithm that service time take queue length into consideration and compared the proposed W-iSLIP algorithm to other previous proposed algorithm through simulation. Simulation results show 2.6% performance elevation in average delay, and 34.6% performance elevation in priority service.

  • PDF

TCP Performance Enhancement by Implicit Priority Forwarding (IPF) Packet Buffering Scheme for Mobile IP Based Networks

  • Roh, Young-Sup;Hur, Kye-Ong;Eom, Doo-Seop;Lee, Yeon-Woo;Tchah, Kyun-Hyon
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.367-376
    • /
    • 2005
  • The smooth handoff supported by the route optimization extension to the mobile IP standard protocol should support a packet buffering mechanism at the base station (BS), in order to reduce the degradation in TCP performance caused by packet losses within mobile network environments. The purpose of packet buffering at the BS is to recover the packets dropped during intersubnetwork handoff by forwarding the packets buffered at the previous BS to the new BS. However, when the mobile host moves to a congested BS within a new foreign subnetwork, the buffered packets forwarded by the previous BS are likely to be dropped. This subsequently causes global synchronization to occur, resulting in the degradation of the wireless link in the congested BS, due to the increased congestion caused by the forwarded burst packets. Thus, in this paper, we propose an implicit priority forwarding (IPF) packet buffering scheme as a solution to this problem within mobile IP based networks. In the proposed IPF method, the previous BS implicitly marks the priority packets being used for inter-subnetwork handoff. Moreover, the proposed modified random early detection (M-RED) buffer at the new congested BS guarantees some degree of reliability to the priority packets. The simulation results show that the proposed IPF packet buffering scheme increases the wireless link utilization and, thus, it enhances the TCP throughput performance in the context of various intersubnetwork handoff cases.

A Priority Packet Forwarding for TCP Performance Improvement in Mobile W based Networks with Packet Buffering (모바일 IP 패킷 버퍼링 방식에서 TCP 성능향상을 위한 패킷 포워딩 우선권 보장 방안)

  • Hur, Kyeong;Roh, Young-Sup;Eom, Doo-Seop;Tchah, Kyun-Hyon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8B
    • /
    • pp.661-673
    • /
    • 2003
  • To prevent performance degradation of TCP due to packet losses in the smooth handoff by the route optimization extension of Mobile IP protocol, a buffering of packets at a base station is needed. A buffering of packets at a base station recovers those packets dropped during handoff by forwarding buffered packets at the old base station to the mobile user. But, when the mobile user moves to a congested base station in a new foreign subnetwork, those buffered packets forwarded by the old base station are dropped and TCP transmission performance of a mobile user in the congested base station degrades due to increased congestion by those forwarded burst packets. In this paper, considering the general case that a mobile user moves to a congested base station, we propose a Priority Packet Forwarding to improve TCP performance in mobile networks. In the proposed scheme, without modification to Mobile IP protocol, the old base station marks a buffered packet as a priority packet during handoff. And priority queue at the new congested base station schedules the priority packet firstly. Simulation results show that proposed Priority Packet Forwarding can improve TCP transmission performance more than Implicit Priority Packet Forwarding and RED (Random Early Detection) schemes.

Approximated Analysis of Mean Waiting Time in Packet Based Priority Token Ring LAN (패킷에 우선도가 있는 토큰링 LAN에서의 평균대기시간의 근사해석)

  • 김영동;이재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.5
    • /
    • pp.453-461
    • /
    • 1989
  • Mean waiting time for each priority packet of each node in packet based priority token ring local area networks(LAN) was approximately analyzed using Bux's token ring LAN results which have not considered priority and Cohbam's head of line(HOL) priority results. In this paper, priority reservation method suggested in the IEEE 802.5 standard was not used. Relative error between numerical results which was presented in this paper and simulation results was identified by +-5%. For traffic intenity, number of node, packet length, transmission speed, line length, token latency, number of priority class and traffic percentage to some heavy trafficd node, mean waiting time of each priority was analyzed.

  • PDF

A Dynamic Wavelength and Bandwidth Allocation Algorithm with Dynamic Framing under Ring-based EPON Architecture

  • Bang, Hak-Jeon;Park, Chang-Soo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.307-308
    • /
    • 2009
  • To reduce delay for high priority packets in the ring-based EPON, the EPON packet classifier groups services as their priorities and frames for services are dynamically framed as their priorities. Since dynamic framing for a packet priority dynamically changes assignment spaces in the maximum framing packet size as network traffics, it makes services with high priority to improve quality of services with relative low threshold time for transmitting.

  • PDF

Delay analysis for a discretionary-priority packet-switching system

  • Hong, Sung-Jo;Takagi, Hideaki
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.729-738
    • /
    • 1995
  • We consider a priority-based packet-switching system with three phases of the packet transmission time. Each packet belongs to one of several priority classes, and the packets of each class arrive at a switch in a Poison process. The switch transmits queued packets on a priority basis with three phases of preemption mechanism. Namely, the transmission time of each packet consists of a preemptive-repeat part for the header, a preemptive-resume part for the information field, and a nonpreemptive part for the trailer. By an exact analysis of the associated queueing model, we obtain the Laplace-Stieltjes transform of the distribution function for the delay, i.e., the time from arrival to transmission completion, of a packet for each class. We derive a set of equations that calculates the mean response time for each class recursively. Based on this result, we plot the numerical values of the mean response times for several parameter settings. The probability generating function and the mean for the number of packets of each class present in the system at an arbitrary time are also given.

  • PDF

Design and Analsis of a high speed switching system with two priority (두개의 우선 순위를 가지는 고속 스윗칭 시스템의 설계 및 성능 분석)

  • Hong, Yo-Hun;Choe, Jin-Sik;Jeon, Mun-Seok
    • The KIPS Transactions:PartC
    • /
    • v.8C no.6
    • /
    • pp.793-805
    • /
    • 2001
  • In the recent priority system, high-priority packet will be served first and low-priority packet will be served when there isn\`t any high-priority packet in the system. By the way, even high-priority packet can be blocked by HOL (Head of Line) contention in the input queueing System. Therefore, the whole switching performance can be improved by serving low-priority packet even though high-priority packet is blocked. In this paper, we study the performance of preemptive priority in an input queueing switch for high speed switch system. The analysis of this switching system is taken into account of the influence of priority scheduling and the window scheme for head-of-line contention. We derive queue length distribution, delay and maximum throughput for the switching system based on these control schemes. Because of the service dependencies between inputs, an exact analysis of this switching system is intractable. Consequently, we provide an approximate analysis based on some independence assumption and the flow conservation rule. We use an equivalent queueing system to estimate the service capability seen by each input. In case of the preemptive priority policy without considering a window scheme, we extend the approximation technique used by Chen and Guerin [1] to obtain more accurate results. Moreover, we also propose newly a window scheme that is appropriate for the preemptive priority switching system in view of implementation and operation. It can improve the total system throughput and delay performance of low priority packets. We also analyze this window scheme using an equivalent queueing system and compare the performance results with that without the window scheme. Numerical results are compared with simulations.

  • PDF

Fuzzy-based Dynamic Packet Scheduling Algorithm for Multimedia Cognitive Radios (멀티미디어 무선인지 시스템을 위한 퍼지 기반의 동적 패킷 스케줄링 알고리즘)

  • Tung, Nguyen Thanh;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • Cognitive radio, a new paradigm for wireless communication, is being recently expected to support various types of multimedia traffics. To guarantee Quality of Service (QoS) from SUs, a static packet priority policy can be considered. However, this approach can easily satisfy Quality of Service of high priority application while that of lower priority applications is being degraded. In the paper, we propose a fuzzy-based dynamic packet scheduling algorithm to support multimedia traffics in which the dynamic packet scheduler modifies priorities of packets according to Fuzzy-rules with the information of priority and delay deadline of each packet, and determines which packet would be transmitted through the channel of the primary user in the next time slot in order to reduce packet loss rate. Our simulation result shows that packet loss rate can be improved through the proposed scheme when overall traffic load is not heavy.