• Title/Summary/Keyword: packet error rate (PER)

Search Result 69, Processing Time 0.02 seconds

Implementation of Software Radio System for IEEE 802.15.4 Physical Layer Using USRP and GNU Radio (USRP와 GNU Radio를 이용한 IEEE 802.15.4 물리 계층 소프트웨어 라디오 시스템 구현)

  • Park, Dae-Hyeon;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1214-1219
    • /
    • 2010
  • In this paper, a software radio system, supporting the physical layer of IEEE 802.15.4 standard, has been developed using USRP(Universal Software Radio Peripheral) board and GNU Radio package of an open source development kit for software radio. The software radio system supports the standards of BPSK and OQPSK modulations for 868/915 MHz band and OQPSK modulation for 2.45 GHz band. To verify the operation of the developed system, it has been tested under the standard signals according to the frequency band and packet structures for the transmitting and receiving operation. At 2.4 GHz, the Smart RF EV board and CC2430 modules are used to check the proper operation of the software radio system. The system performance test shows that the emission power spectrum, the eye-pattern, and PER(Packet Error Rate) meet the standard. It has been confirmed that the developed system supports the PHY layer of IEEE 802.15.4.

Performance Evaluation of PEP based TCP Splitting Scheme in Satellite Communication Systems (위성 통신 시스템에서 TCP연결 분할 기반 PEP의 성능 평가)

  • Weldegiorgis, Nathnael Gebregziabhe;Lee, Kyu-Hwan;Kim, Jong-Mu;Kim, Jae-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.8
    • /
    • pp.10-17
    • /
    • 2015
  • A satellite communication system is one of viable solutions for Internet applications running in wide areas. However, the performance of TCP can be seriously degraded in the satellite networks due to long round-trip time (RTT) and high bit error rate (BER) over satellite links. Therefore, a performance enhancing proxy(PEP) based TCP splitting connection scheme is used in the satellite link to improve the TCP performance. In this paper, we implement PEP testbed and conduct experiment to evaluate the performance of TCP splitting connection by comparing with high-speed TCP solutions in various environments. In our experimental environment, we consider multiple connections, high packet loss, and limited bandwidth. The experiment results show that PEP improves the TCP throughput than high-speed TCP variants in various environments. However, there is no improvement of the TCP throughput with the limited bandwidth because there is packet loss caused by both the congestion and the channel error.

Advanced Channel Estimation Schemes Using CDP based Updated Matrix for IEEE802.11p/WAVE Systems

  • Park, Choeun;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.14 no.1
    • /
    • pp.39-44
    • /
    • 2018
  • Today, cars have developed into intelligent automobiles that combine advanced control equipment and IT technology to provide driving assistance and convenience to users. These vehicles provide infotainment services to the driver, but this does not improve the safety of the driver. Accordingly, V2X communication, which forms a network between a vehicle and a vehicle, between a vehicle and an infrastructure, or between a vehicle and a human, is drawing attention. Therefore, various techniques for improving channel estimation performance without changing the IEEE 802.11p standard have been proposed, but they do not satisfy the packet error rate (PER) performance required by the C-ITS service. In this paper, we analyze existing channel estimation techniques and propose a new channel estimation scheme that achieves better performance than existing techniques. It does this by applying the updated matrix for the data pilot symbol to the construct data pilot (CDP) channel estimation scheme and by further performing the interpolation process in the frequency domain. Finally, through simulations based on the IEEE 802.11p standard, we confirmed the performance of the existing channel estimation schemes and the proposed channel estimation scheme by coded PER.

ODPM Channel Estimation Method using Multiple MRC and New Reliability Test in IEEE 802.11p Systems with Receive Diversity

  • Lim, Sungmook;Ryu, Gihoon;Ko, Kyunbyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4584-4599
    • /
    • 2021
  • In IEEE 802.11p-based wireless access in vehicular environments (WAVE) communication systems, channel estimation (CE) is one of the important issues to provide stable communication service. It is hard to apply conventional CE schemes based on data pilot to real systems, because error propagation occurs in high mobility and modulation order environments, resulting in degrading the CE performance. In this paper, we propose one data pilot using multiple receive antennas (ODPM) CE scheme based on the weighted sum using update matrix (WSUM) with time-domain averaging (TDA) to overcome this problem. Within the process of WSUM-TDA in the proposed scheme, the maximum ratio combining (MRC) technique is applied so as to create more accurate one data pilot. Moreover, a new reliability test criterion is proposed as the fashion of utilizing MRC, which makes it possible to apply selective TDA that guarantees performance improvement. In simulation results, the packet error rate (PER) performance of the proposed ODPM is compared with that of conventional CE methods and its superiority is demonstrated.

A study on the implementation and performance evaluation of low-power ZigBee sensor in the M2M gateway system (M2M Gateway 시스템을 위한 저전력 지그비 센서 구현 및 성능평가에 관한 연구)

  • Jeon, Joong-Sung;Kim, Nam-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.629-634
    • /
    • 2016
  • This paper describes the implementation of a ZigBee sensor node that can be utilized as a multiband and machine to machine (M2M) communication gateway. The IEEE 802.15.4-2003 standard was used as the wireless network frequency band. Ember's Type EM357 SoC was used as the transmission and reception device to perform the communication function, and it was also used for both the main M2M gateway and the sensor node. For the implementation of the operating protocol, EmberZNet Stack 4.5.4 from the Ember Corporation was used. The measurement of the reception sensitivity in the receiving module and the actual output signal from the reference were obtained from the transmission of a packet, and the packet included the M2M gateway within the attached ZigBee sensor. The packet error rate was measured as 0% with a -98 dBm reception sensitivity at the ZigBee frequency. In addition, excellent current characteristics of the ZigBee modules were shown by the implementation of the low-power circuit.

Performance Analysis of Real-time Retransmission in LR-WPAN (LR-WPAN에서 실시간 재전송 성능분석)

  • Cho, Moo-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.5
    • /
    • pp.21-30
    • /
    • 2011
  • In this paper, we propose a real-time service based on retransmission slot in low rate WPAN. In the proposed scheme, during the communication period of the beacon-enabled mode in LR-WPAN standard, a special GTSs is dynamically assigned for retransmission of the packet that fails during a real-time service such as voice. This provides a time diversity in the severe channel error environments to support the required QoS. Analytical results show that this scheme achieves a much higher throughput and better transmission success rate per GTS slot than conventional schemes such as a common reserved scheme in LR WPAN.

On the Design of a WiFi Direct 802.11ac WLAN under a TGn MIMO Multipath Fading Channel

  • Khan, Gul Zameen;Gonzalez, Ruben;Park, Eun-Chan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1373-1392
    • /
    • 2017
  • WiFi Direct (WD) is a state of the art technology for a Device-to-Device (D2D) communication in 802.11 networks. The performance of the WD system can be significantly affected by some key factors such as the type of application, specifications of MAC and PHY layer parameters, and surrounding environment etc. It is, therefore, important to develop a system model that takes these factors into account. In this paper, we focus on investigating the design parameters of the PHY layer that could maximize the efficiency of the WD 802.11 system. For this purpose, a basic theoretical model is formulated for a WD network under a 2x2 Multiple In Multiple Out (MIMO) TGn channel B model. The design level parameters such as input symbol rate and antenna spacing, as well as the effects of the environment, are thoroughly examined in terms of path gain, spectral density, outage probability and Packet Error Rate (PER). Thereafter, a novel adaptive algorithm is proposed to choose optimal parameters in accordance with the Quality of Experience (QoE) for a targeted application. The simulation results show that the proposed method outperforms the standard method thereby achieving an optimal performance in an adaptive manner.

Improvement of the Link Reliability for Ship Ad-Hoc Network by Employing Multiple Antennas

  • Su, Xin;Hui, Bing;Chang, KyungHi;Kim, SeungGeun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1065-1075
    • /
    • 2012
  • For the purpose of providing high data rate real-time services, radio transmission technologies (RTT) for ship ad-hoc network (SANET) based on the Recommendation ITU-R 1842-1 are designed. Physical layer parameters of SANET are contrived to meet the requirements of the specification. In order to improve the link reliability for SANET, in this paper, we investigate the performance of the SANET with the multiple antennas, where receive combining (RC), transmit diversity (TD), and beamforming (BF) are employed, respectively. Based on the analysis of the packet error rate (PER) under the highly correlated maritime wireless channel model, we select the efficient multiple antenna schemes for SANET to improve the link reliability. In addition, the optimal MCS levels for the single-carrier (SC) SANET with the bandwidth of 25 kHz, and the multi-carrier (MC) SANET with the bandwidth of 50 kHz and 100 kHz are finalized.

Performance Evaluation of WSP with Capability Extension using Compression Techniques (압축 기법을 이용한 WSP의 기능 확장과 성능 평가)

  • Kim, Ki-Jo;Lee, Dong-Gun;Lim, Kyung-Shik
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.5
    • /
    • pp.543-552
    • /
    • 2002
  • Wireless Session Protocol(WSP) which was updated and supplemented based on HyperText Transfer Protocol(HTTP) was designed by Wireless Application Protocol(WAP) forum regarding the characteristics of wireless environment. WSP improved the performance in wireless network, and introduced various facilities considering wireless environment. In this paper, we more improve the performance of WSP adding protocol message compression capability; we cail improved WSP protocol as WSP+. And, we analysis the performance of each protocol with WSP and WSP+ implementation. As a result of experiment, the capability which proposed in this paper reduced a response traffic about 45%. In $10^{-4}$ bit error rate, we also found the packet loss rate and time delay per transaction of WSP+ was improved over 40%. Finally, we found that the protocol message compression capability reduces message retransmission count in transaction layer and shorten the delay time per transaction by reducing a message size.

A Study on the Performance of Home Embedded System Using a Wireless Mesh Network (무선 메쉬 네트워크를 이용한 홈 임베디드 시스템의 성능에 대한 연구)

  • Roh, Jae-Sung;Ye, Hwi-Jin
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.323-328
    • /
    • 2007
  • Communication systems beyond 3G should provide more than 100 Mbps for wireless access. In addition to smart antennas, wireless multi-hop networks are proposed to increase the cell size and throughput. For example, Zigbee technology is expected to provide low cost and low power connectivity and can be implemented in wireless mesh networks larger than is possible with Bluetooth. Also, home embedded system using wireless mesh network is one of the key market areas for Zigbee applications. If the line-of-sight path is shadowed by home obstacles, a direct connection between the access point (AP) and the node is not possible at high frequencies. Therefore, by using multi-hop relay scheme the end node can be reached to AP. In this paper, the relaying of data between the AP and the end node is investigated and the throughput and PER(Packet Error Rate) are evaluated in multi-hop wireless mesh networks by using DSSS/BPSK system.

  • PDF