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Abstract 

 
In IEEE 802.11p-based wireless access in vehicular environments (WAVE) communication 
systems, channel estimation (CE) is one of the important issues to provide stable 
communication service. It is hard to apply conventional CE schemes based on data pilot to 
real systems, because error propagation occurs in high mobility and modulation order 
environments, resulting in degrading the CE performance. In this paper, we propose one data 
pilot using multiple receive antennas (ODPM) CE scheme based on the weighted sum using 
update matrix (WSUM) with time-domain averaging (TDA) to overcome this problem. Within 
the process of WSUM-TDA in the proposed scheme, the maximum ratio combining (MRC) 
technique is applied so as to create more accurate one data pilot. Moreover, a new reliability 
test criterion is proposed as the fashion of utilizing MRC, which makes it possible to apply 
selective TDA that guarantees performance improvement. In simulation results, the packet 
error rate (PER) performance of the proposed ODPM is compared with that of conventional 
CE methods and its superiority is demonstrated. 
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1. Introduction 

Recently, interest in vehicle-to-everything (V2X) communication systems has explosively 
increased because of providing reliable traffic safety and infotainment service in the high-
speed moving environment of vehicles [1-17]. 

In order to reliably provide V2X, the standardization of wireless access in vehicular 
environments (WAVE) based on IEEE 802.11p has proceeded, where physical and medium 
access control layers are defined [1][2]. It is noted that the IEEE 802.11p is the same as the 
IEEE802.11a, which was standardized for a static indoor environment, except that the 
bandwidth is reduced from 20 MHz to 10 MHz [1]. In other words, the IEEE 802.11p has only 
long training symbols in preamble of each frame for channel estimation (CE) and only four 
phase tracking pilot subcarriers, which are used for compensating phase rotation, in each 
orthogonal frequency division multiplexing (OFDM) symbol. It causes inaccurate CE by the 
channel’s time-varying characteristics in the high-speed moving environment of vehicles, 
resulting in degrading the packet error rate (PER) performance. In order to overcome this 
problem, various data pilot-based CE schemes in IEEE 802.11p-based WAVE systems are 
being studied, where the estimated channel values in frequency domain are updated based on 
the estimated data symbols for every OFDM symbol. [3-14]. 

In single receive antenna environment, one of representative data pilot-based CE schemes 
is the spectral temporal averaging (STA) scheme, where the estimated channel coefficient is 
averaged in both the frequency and the time domains [4]. Furthermore, in [4], the construct 
data pilot (CDP) scheme was proposed in order to enhance the PER performance in high signal 
to noise ratio (SNR) by performing the reliability test. In [5], time-domain reliable-test 
frequency-domain interpolation (TRFI) was proposed in order to alleviate the error 
propagation problem of CDP by improving the reliability test. On the other hand, the weighted 
sum (WSUM) scheme was also proposed to enhance the PER performance in low SNR by 
introducing a novel update matrix [8], and the CE scheme based on minimum mean square 
error (MMSE) was proposed, which can be implemented in a real environment [9]. However, 
in all of the existing methods mentioned above, the PER performance can be degraded in 
higher modulation order and time-selectivity of the channel. 

On the other hand, in multiple receive antenna environment, the estimated channel 
coefficients are updated by maximal ratio combining (MRC) based on data pilot constructed 
by each antenna, resulting in enhancing PER due to receive diversity gain [10-14]. In [10] and 
[11], the authors studied the receiver and transmit diversities in IEEE 802.11p standard and 
MRC technique was applied based on independent CE for each receiving antenna. In [12], the 
authors proposed the receiver structure using a decision feedback equalizer (DFE) based on 
decoded bits and MRC so that it required both high processing delay and complexity. In [14], 
the authors proposed the iterative CE scheme based on MRC packing CE scheme but it does 
not fully obtain MRC diversity in CE process. 

As far as we know, there have been no studies on CE methods in multiple receive antenna 
environment where receive antenna diversity can be sufficiently obtained during the CE 
process to provide robustness in all SNR regions, regardless of modulation schemes. 

In this paper, we propose one data pilot using multiple receive antennas (ODPM) CE 
scheme based on WSUM with time-domain averaging (WSUM-TDA) and then, the 
performance enhancement is evaluated. Also, we compare the performance of conventional 
MRC based CE schemes. An important feature of the proposed scheme is that MRC technique 
is applied in three part. In the first part, WSUM-TDA scheme is applied so that it has a structure 
that makes one constructed data pilot by applying MRC instead of independently making 
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constructed data pilots for each receive antenna. The second part is related to a new reliability 
test using two variables for each antenna and two variables applying MRC. Finally, MRC is 
applied to the received signals using the estimated channel value per antenna. 

The remainder of this paper is organized as follows: In Section 2, physical layer of the 
IEEE 802.11p standard is described. Then, Section 3 addresses conventional CE schemes. 
Section 4 proposes a new CE scheme. In Section 5, simulation results are shown. Finally, in 
Section 6, concluding remarks are given. 

2. System Model 
The IEEE 802.11p standard is basically designed the same as IEEE 802.11a [1]. It is based on 
OFDM at the center frequency of 5.9GHz. When fast Fourier transform (FFT) and inverse 
FFT is performed, its size is 64. In the transmitter, the convolutional encoder with constraint 
length 7 is used as a channel coding, and the Viterbi decoder is used in the receiver. The main 
difference between the IEEE 802.11p and the IEEE 802.11a is that it uses a bandwidth of 
10MHz whereas the IEEE 802.11a utilizes 20MHz. Because of that, the IEEE 802.11p utilizes 
the subcarrier frequency spacing of 0.15625MHz, whereas the IEEE 802.11a utilizes 
0.3125MHz. In addition, the FFT period, guard interval (GI) duration and symbol duration are 
twice the size of them of the IEEE 802.11a [1]. 

In the IEEE 802.11p, the frame structure consists of three parts, which is also the same as 
the IEEE 802.11a: 1) preamble which is divided into short and long training symbols for time 
synchronization and CE, respectively, 2) signal field which includes control information such 
as the modulation order, the channel code rate and so on, and 3) data field which consists of 
multiple OFDM symbols which conveys the transmitted information. The number of OFDM 
symbols constituting data filed is variable according to systems. [1][9]. 

Each OFDM symbol is composed of 64 subcarriers of which the frequency index ranges 
from -32 to 31. The 64 subcarriers of each OFDM consist of 4 as pilot subcarriers, 12 as null 
subcarriers and 48 as data subcarriers, respectively. The original purpose of 4 pilot subcarriers 
is to compensate the phase rotation. However, in the data pilot-based CE schemes, they are 
also used for estimating the channel coefficients by tracking the time variation of the channel 
in frequency domain. They are located on -21, -7, 7 and 21 in the frequency index. The 12 null 
subcarriers consist of 11 virtual subcarriers where the corresponding subcarrier indices are 
from -32 to -27 and from 28 to 31, and a direct current subcarrier which is located on subcarrier 
0. The remaining 48 data subcarriers are used for data transmission. In this paper, the 
subcarrier indices of -21, -7, 7 and 21 are defined as pS  and the set of data subcarrier indices 

is defined as dS , which satisfies = { 26, 25, , 1,1, ,25,26}d pS S − − ⋅⋅ ⋅ − ⋅ ⋅ ⋅U . For other specific 
parameters defined in [1].  

In the receiver, after removing GI and performing FFT, the signal at the k th subcarrier of 
the i th OFDM symbol in r th rx antenna, , ( )r iY k , is  

, , ,( ) = ( ) ( ) ( )r i r i i r iY k H k X k W k+                                             (1) 
 with { }1,2, ,r R∈ ⋅⋅ ⋅ , { }data1,2, ,i N∈ ⋅⋅ ⋅ , and d pk S S∈ ∪ . R  and dataN  are the numbers of 

receive antenna and OFDM symbols in data field (i.e., packet), respectively. , ( )r iH k , ( )iX k , 
and , ( )r iW k  mean the channel coefficient, the data symbol, and the additive white Gaussian 

noise (AWGN) with zero mean and variance 2
Wσ  in the frequency domain, respectively. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4587 

3. Conventional CE Schemes for the IEEE 802.11p 
In this section, the conventional CE techniques including STA, CDP and WSUM are explained 
and analyzed. [4][8][9]. 

3.1 STA 
In STA, the estimated channel coefficients are averaged on both time and frequency axes to 
overcome the performance degradation due to time-varying channels. [4]. 

3.1.1 Equalization 

At first, for the r th rx antenna, the channel coefficient of the k th subcarrier, ( ),0
ˆ

rH k , is 
estimated by the least square (LS) method using two received long training symbols in 
preamble, which are denoted as ,1( )T

rY k  and ,2 ( )T
rY k . Then, ( ),0

ˆ
rH k  can be expressed as 

follows:  

                          ( ) ( ),1 ,2
,0

( ) ( )ˆ = ,   
2 ( )

T T
r r

r d pT

Y k Y k
H k k S S

X k
+

∈ U                     (2) 

Here, ( )TX k  is the long training symbol of the k th subcarrier in the transmitter, which the 
receiver also knows. 

In order to equalize the received signal of the k th subcarrier at the r th antenna in the i th 
OFDM symbol, , ( )r iY k , the previous ( 1)i − th channel coefficient, ( ), 1

ˆ STA
r iH k− , is used as 

follows:  
( )STA

, , , 1
ˆ( ) = ( ) / ,   r i r i r i dS k Y k H k k S− ∈                           (3) 

When  1i = , ( ),0
ˆ STA

rH k  is equal to ( ),0
ˆ

rH k  in (2). Also, it is noted for = 1i  that we can set 

( ) ( )STA FDA
,0 ,0

ˆ ˆ=r rH k H k  from (6). 

3.1.2 Construction of Data Pilot 

As a next step, based on , ( )r iS k  in (3), ( ),
ˆ

r iX k , is demapped as  

( ) ( ),
,

( ) , if    ˆ =
( ), else

r i d
r i P

i

D S k k S
X k

X k

 ∈



                                       (4) 

where ( ),
ˆ

r iX k  denotes the data symbol and ( )D ⋅  means a demapping quantizer which maps 

the equalized signal to the nearest constellation point. ( )P
iX k  with pk S∈  is a predefined pilot 

symbol in the frequency domain. Then, in the next step, ( ),
ˆ

r iX k  can be used to update the 
estimated channel coefficient as data pilot. 

3.1.3 LS 

Based on the constructed data pilot, ( ),
ˆ

r iX k  in (4), the channel coefficient of the k th 

subcarrier at the r th antenna in the i th OFDM symbol, ( ),
ˆ

r iH k , is estimated as follows:  

                                 ( ) ( ) ( ), , ,
ˆ ˆ= ( ) / ,   .r i r i r i d pH k Y k X k k S S∈ U         (5) 
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3.1.4 Averaging in Frequency Domain 
The estimated channel coefficient in (5) can be distorted by demapping error as well as AWGN.  
In order to alleviate this distortion, the adjacent channel coefficients in the frequency axis are 
averaged as  

( ) ( ) ( )FDA
, ,

=

ˆ ˆ= ,   r i r i d pH k H k k S S
β

λ
λ β

λ ω
−

+ ∈∑ U  (6) 

where = 1 / (2 1)λω β +  is a weighting coefficient and (2 1)β +  means the number of 
subcarriers used for averaging [4][8]. 

3.1.5 Averaging in Time Domain 
After averaging the channel coefficients in the frquency domain, we apply time domain 
averaging for > 0i . Then, the channel coefficient can be finally estimated as  

( ) ( ) ( )STA FDA FDA
, , 1 ,

1 1ˆ ˆ ˆ= 1r i r i r iH k H k H k
α α−

 − + 
 

 (7) 

 for ( )d pk S S∈ U  and α  is a weight coefficient in the time domain. In this paper, we consider 

= = 2α β  for STA scheme [4][8]. 
The finally estimated channel coefficient, ( )STA

,
ˆ

r iH k  in (7) is used to construct data pilot 
and update the channel coefficient at the next ( 1)i + th OFDM symbol. Therefore, we return 
to the procedure of (3) and repeat the remaining steps. After operations from (2) to (7) are 
independently performed for each antenna, MRC can be finally performed.  

3.2 CDP 
In CDP scheme, it is assumed that channels between two adjacent OFDM symbols are highly 
correlated, so channel variation is insignificant. Based on this assumption, the reliability test 
of the estimated channel coefficient is performed, and the channel coefficients which only pass 
the reliability test are selected [4]. The CE procedure of CDP is equal to that of STA from (2) 
to (5). Furthermore, ( ) ( )CDP

,0 ,0
ˆ ˆ=r rH k H k  is used for = 1i . 

3.2.1 Equalization and Demapping 
In order to perform the reliability test in CDP, the initial channel coefficient to be estimated 
by (5), ( ),

ˆ
r iH k , and the finally estimated channel coefficient of the previous OFDM symbol, 

( )CDP
, 1

ˆ
r iH k− , are utilized to equalize the ( 1)i − th received signal (i.e., , 1( )r iY k−  for dk S∈ ) as 

follows [4]:  
( )
( )

, 1 , 1 ,

CDP
, 1 , 1 , 1

ˆ( ) = ( ) /
ˆ( ) = ( ) /

'
r i r i r i

''
r i r i r i

S k Y k H k

S k Y k H k
− −

− − −

 (8) 

Then, based on , 1( )'
r iS k−  and , 1( )''

r iS k− , , 1
ˆ ( )'

r iX k−  and , 1
ˆ ( )''

r iX k−  can be obtained as [4] 

( )
( )

, 1 , 1

, 1 , 1

ˆ ( ) = ( )

ˆ ( ) = ( )

' '
r i r i

'' ''
r i r i

X k D S k

X k D S k

− −

− −

     (9) 

 and, for pk S∈ , we can set , 1 , 1
ˆ ˆ( ) = ( ) = ( )'' ' P

r i r i iX k X k X k− − . 
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3.2.2 Reliability Test 
Under the assumption of the high channel correlation between two adjacent OFDM symbols 
in time domain, ,

ˆ ( )r iH k  should be similar to CDP
, 1

ˆ ( )r iH k− . Therefore, if the estimated channel, 

,
ˆ ( )r iH k , is correct, , 1

ˆ ( )'
r iX k−  and , 1

ˆ ( )''
r iX k−  should be the same. Based on that, the final 

channel coefficient in CDP can be determined as follows:  

( ) , , 1 , 1CDP
, CDP

, 1

ˆ ˆ ˆ( ) if  ( )= ( )ˆ = ˆ ( ) else.

' ''
r i r i r i

r i
r i

H k X k X k
H k

H k
− −

−





 (10) 

The channel coefficient estimated by (10), ( )CDP
,

ˆ
r iH k , can be used to construct data pilot 

and update the channel coefficient at the next ( 1)i + th OFDM symbol. Therefore, we return 
to the procedure of (3) and repeat the remaining steps with STA CDP

, 1 , 1
ˆ ˆ( ) = ( )r i r iH k H k− − . 

3.3 WSUM 
In WSUM, an update matrix which indicates whether the channel coefficient estimated by 
CDP is accurate or not is firstly defined, and based on that, the channel coefficient is updated 
by weighted averaging procedure [8]. 

3.3.1 Initial CE 

When = 1i , we can set CDP
,0 ,0

ˆ ˆ( ) = ( )r rH k H k  from (2) and ,0 ( ) = 1rM k  for ( )d pk S S∈ U . The 

initial channel coefficient, WSUM
,0

ˆ ( )rH k , can be estimated as follows:  

( )CDP
,0 ,0

=WSUM
,0

,0
=

ˆ ( )
ˆ ( )=

( )

r r

r

r

H k M k
H k

M k

β

λ
λ β

β

λ
λ β

λ λ ω

λ ω

−

−

+ +

+

∑

∑
        (11) 

 with = 1β  and [ ] [ ]1 0 1, , = 0.5,1.0,0.5ω ω ω−  [8][9].  

3.3.2 WSUM Equalization 

Similarly to (3), the received signal, , ( )r iY k , is equalized by the previous ( 1)i − th channel 

coefficient, WSUM
, 1

ˆ ( )r iH k− , and the equalized signal is 
WSUM

, , , 1
ˆ( ) = ( ) / ( ),  r i r i r i dS k Y k H k k S− ∈  (12) 

 Note that for = 1i , WSUM
,0

ˆ ( )rH k  of (11) is used in (12). 

3.3.3 Construction of Data Pilot 

Through (4) and (12), the data symbol, ,
ˆ ( )r iX k , can be obtained. Furthermore, from (5) with 

,
ˆ ( )r iX k , ,

ˆ ( )r iH k  can be easily obtained. 

3.3.4 Equalization and Demapping 

By using ,
ˆ ( )r iH k  and WSUM

, 1
ˆ ( )r iH k−  in (8) and (9), the previous received data symbol, , 1( )r iY k− , 
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is equalized and then demapped for dk S∈  as  

( )( )
( )( )

, 1 , 1 ,

WSUM
, 1 , 1 , 1

ˆ ˆ( ) = ( ) /

ˆ ˆ( ) = ( ) / .

'
r i r i r i

''
r i r i r i

X k D Y k H k

X k D Y k H k

− −

− − −

                                 (13) 

For pk S∈ , we can set , 1 , 1
ˆ ˆ( ) = ( ) = ( )'' ' P

r i r i iX k X k X k− − . 

3.3.5 Weighted SUM 
By usinig (13), we define the update matrix of the k th subcarrier at the r th antenna in the i
th OFDM symbol, , ( )r iM k , as follows:  

( ) , 1 , 1
,

ˆ ˆ1, if  ( ) = ( )=
0, else.

' ''
r i r i

r i
X k X kM k − −





                                (14) 

In WSUM, it is assumed that channels between adjacent subcarriers in frequency domain 
are highly correlated. Based on that, the final channel coefficient to be estimated by weighted 
sum is  

         

( )CDP
, ,

=
,WSUM

=,
,

=

WSUM
, 1

ˆ ( )
if  ( )ˆ ( ) = ( )

ˆ ( ) else

r i r i

r i
r i

r i

r i

H k M k
M k N

H k M k

H k

β

λ β
λ β

β
λ β

λ
λ β

λ λ ω
λ

λ ω

−

−

−

−


+ +

 + ≥
 +




∑
∑

∑      (15) 

 with = 1β  and = 2N  [8][9]. 
The final channel coefficient estimated by (15), WSUM

,
ˆ ( )r iH k , can be used to construct data 

pilot and update the channel coefficient at the next ( 1)i + th OFDM symbol. Therefore, we 
return to the procedure of (12) and repeat the remaining steps. 

4. Proposed CE Method 

 
Fig. 1. Block diagram of the proposed CE scheme. 
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In the existing studies, the MRC technique is applied only to the step of equalizing the received 
signal using channel estimates for each receiving antenna. The proposed method utilizes MRC 
technique in two steps in addition to this. In the first step related with WSUM-TDA scheme, 
we can obtain one constructed data pilot by applying MRC instead of independently 
constructed data pilots for each receiving antenna. Note that by making a more accurate 
constructed data pilot, more accurate CE can be made in the later process. In second step, we 
propose a new reliability test criteria to which MRC is applied. Under a new reliability test 
criteria, we can obtain a more accurate instantaneous CE coefficient, and through this, the CE 
performance of the WSUM technique is also improved. In addition, the proposed new 
reliability test criteria is related to the application of selective TDA, which guarantees 
performance improvement through TDA. 

Fig. 1 shows the block diagram of the proposed CE scheme.  

4.1 Initial CE 
It is noted that the proposed CE scheme is based on WSUM-TDA method [9]. For = 0i , we 
can get TDA WSUM

,0 ,0
ˆ ˆ( ) = ( )r rH k H k  from (2) and (11). 

4.2 ODPM (CDP using MRC) 
For increasing the accuracy of the constructed data pilot, the MRC technique can be applied 
for dk S∈  as  

TDA*
, 1 ,

ODPM =1
2TDA

, 1
=1

ˆ ( ) ( )
ˆ ( ) =

ˆ

R

r i r i
r

i R

r i
r

H k Y k
X k D

H

−

−

 
 
 
 
 
 

∑

∑
                                         (16) 

and we can set ODPMˆ ( ) = ( )P
i iX k X k  for pk S∈ . By comparing (16) with (4), it is shown that 

one data pilot symbol is constructed in the proposed scheme [13]. 

4.3 Weighted SUM 

4.3.1 LS Estimation 

From (5) with ODPMˆ ( )iX k , we can get  

( ) ( ) ( )ODPM
, ,

ˆ ˆ= ( ) / ,   .r i r i i d pH k Y k X k k S S∈ U                                 (17)  

4.3.2 Equalization and Demapping 

Similar with (13) and (16), for dk S∈ , we can get  

( ) ( )( )
( ) ( )( )

, 1 , 1 ,

TDA
, 1 , 1 , 1

ˆ ˆ= ( ) /

ˆ ˆ= ( ) /

'
r i r i r i

''
r i r i r i

X k D Y k H k

X k D Y k H k

− −

− − −

                                       (18) 

 and  
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2*
1 , , 1 ,

=1 =1

TDA*
, 1 , 1

=1
1 2TDA

, 1
=1

ˆ ˆ ˆ( ) = ( ) ( ) /

ˆ ( ) ( )
ˆ ( ) = .

ˆ

R R
'
i r i r i r i

r r

R

r i r i
'' r
i R

r i
r

X k D H k Y k H

H k Y k
X k D

H

− −

− −

−

−

 
 
 
 
 
 
 
 
 

∑ ∑

∑

∑

                              (19) 

 For pk S∈ , we can set , 1 , 1 1 1
ˆ ˆ ˆ ˆ( ) = ( ) = ( ) = ( ) = ( )'' ' '' ' P

r i r i i i iX k X k X k X k X k− − − − . Note that, as 
shown in (19), new variables for the reliability test are obtained regardless of the antenna index 
by applying MRC in the proposed scheme. 

4.3.3 New Reliability Test 
From (18) and (19), we propose new reliability test criteria and update matrix as  

( ) , , 1 , 1 1 1CDP
, CDP

1

ˆ ˆ ˆ ˆ ˆ( ) if  ( )= ( ) or ( )= ( )ˆ =
ˆ ( ) else

'' ' '' '
r i r i r i i i

r i
i

H k X k X k X k X k
H k

H k
− − − −

−





 (20) 

 and  

( ) , 1 , 1 1 1
,

ˆ ˆ ˆ ˆ1, if  ( )= ( ) or ( )= ( )=
0, else.

'' ' '' '
r i r i i i

r i
X k X k X k X kM k − − − −





 (21) 

 From (15) with both (20) and (21), we can get WSUM
,

ˆ ( )r iH k . 
When comparing (20) and (10), we can see the difference in the condition of 

1 1
ˆ ˆ( ) = ( )'' '

i iX k X k− − . When this condition is satisfied in the proposed scheme, it means that 

( )CDP
,

ˆ
r iH k  of all antennas are simultaneously updated to instantaneous channel values ,

ˆ ( )r iH k  
by fully acquiring the receive antenna diversity. On the other hand, in the conventional method, 
each antenna can be independently updated, which means that the receive antenna diversity 
during CDP precess cannot be completely obtained.  

4.4 Selective TDA 
Similar with STA scheme, a TDA method can be also applied into WSUM scheme and it can 
be expressed as [9] 

WSUM TDA WSUM
, 1 , ,TDA

, TDA
,

ˆ ˆ( ) ( ) ( )ˆ ( ) =
1 ( )

r i r i r i
r i

r i

H k M k H k
H k

M k
− +

+
                                     (22) 

 where TDA
, ( )r iM k  is a variable indicating whether TDA is applied or not and is expressed as  

,TDA
=,

1, if  ( )
( ) =

0, else.

r i
r i

M k N
M k

β

λ β

λ
−


+ ≥





∑                                    (23) 

Finally, from { }TDA
, =1

( )
R

r i r
H k  of (22), we equalize the received signals by applying MRC as  

 
2TDA* TDA

, , ,
=1 =1

ˆ ˆ ˆ( ) = ( ) ( ) / .
R R

i r i r i r i
r r

X k H k Y k H∑ ∑                                        (24) 

 Notice in the proposed scheme that, as shown in Fig. 1, MRC technique is used at three 
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parts: ODPMˆ ( )iX k  of (16), both 1
ˆ ( )'

iX k−  and 1
ˆ ( )''

iX k−  of (19), and ˆ ( )iX k  of (24). 

5. Simulation Results 
In this section, the superiority of the proposed ODPM is demonstrated. For this, V2X channel 
models presented by Cohda Wireless are considered, where the five scenarios are presented 
according to the driving environment and the moving speed of vehicles [15]. Among the five 
scenarios, ‘Street Crossing NLOS with 126km/h’, ‘Highway LOS with 252km/h’, and 
‘Highway NLOS with 252km/h’ were used for our simulations. Parameters of each scenario 
including the channel power, delay and Doppler are refered in  [15]. In addition, we adopt 
QPSK and 16-QAM with coding rate of 1/2. In order to evaluate the PER performance, 510  
packets are generated and transmitted with { }2,3R∈ , data = 100N , and 

2 2
,SNR = ( ) /r i WE H k σ 

  
. 

In Fig. 2 and Fig. 3, the PER performance of ODPM is compared with that of conventional 
CE methods under ‘Street Crossing NLOS with 126km/h’, when QPSK and 16QAM are 
considered, respectively. In Fig. 4 and Fig. 5, when ‘Highway LOS with 252km/h’ is 
considered, the PER performance of ODPM is compared with that of conventional CE 
methods with QPSK and 16QAM modulations, respectively. Finally, in Fig. 6 and Fig. 7, 
ODPM with QPSK and 16QAM modulations is evaluted in terms of the PER performance in 
the channel model of ‘Highway NLOS with 252km/h’. 

In all figures, ‘Proposed ODPM’ means the proposed scheme in Section 4, where = 1β , 
[ ] [ ]1 0 1, , = 0.5,1.0,0.5ω ω ω− , and = 2N  [8]. We show the PER performance for conventional 
existing schemes of ‘STA’, ‘CDP’, ‘WSUM’, and ‘WSUM-TDA’. In the existing schemes, 
the CE process for each antenna is independently performed and finally the MRC technique is 
used only once as the same fashion of (24). 

Through all the figures, the proposed ODPM CE scheme outperforms all conventional 
schemes in all SNR regions with regard to the PER performance. Moreover, its superiority has 
been demonstrated, with both QPSK and 16QAM modulations.  

In figures 2, 3, 5 and 6, the PER performances of CDP, WSUM and WSUM-TDA are better 
than that of STA only when SNR is high. However, ODPM shows the better performance than 
STA in all SNR regions. Therefore, it is demonstrated that ODPM is resistant to time variation 
of the channel as well as noise in low SNR region. From Fig. 4 and Fig. 5, it is shown at PER=

210−  that the proposed scheme can give more than 2.5dB SNR gain over ‘WSUM-TDA’ and 
more than 5.0dB SNR gain over ‘WSUM’,  respectively. Furthermore, it is verified that the 
performance gain of ODPM will be more pronounced at higher modulation order. Furthermore, 
from Fig. 6 and Fig. 7, it is shown that the proposed method in the NLOS environment can 
achieve PER= 210−  in a reasonable SNR area.  

In Fig. 8 and Fig. 9, the PER performance of the proposed ODPM is compared with that 
of  WSUM-TDA as the number of antennas increases under ‘Highway NLOS with 252km/h’ 
with QPSK and 16QAM modulations, respectively. The more the number of antennas is, the 
more pronounced the performance enhancement of the proposed scheme due to the diversity 
gain is. Furthermore, when the number of antennas is 3, the proposed method meets 1% PER 
at SNR = 10dB and SNR = 18dB with QPSK and 16QAM modulations, respectively, whereas 
the conventional method does not satisfy 1% PER even at SNR = 30dB. 
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Fig. 2. Comparison of PER performance of the proposed ODPM with conventional CE schemes in 

Street Crossing NLOS channel model with a relative speed of 126km/h (QPSK 1/2, R=2). 

 
Fig. 3. Comparison of PER performance of the proposed ODPM with conventional CE schemes in 

Street Crossing NLOS channel model with a relative speed of 126km/h (16QAM 1/2, R=2). 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4595 

 
Fig. 4. Comparison of PER performance of the proposed ODPM with conventional CE schemes in 

Highway LOS channel model with a relative speed of 252km/h (QPSK 1/2, R=2). 
 

 
Fig. 5. Comparison of PER performance of the proposed ODPM with conventional CE schemes in 

Highway LOS channel model with a relative speed of 252km/h (16QAM 1/2, R=2).  
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Fig. 6. Comparison of PER performance of the proposed ODPM with conventional CE schemes in 

Highway NLOS channel model with a relative speed of 252km/h (QPSK 1/2, R=2). 
 

 
Fig. 7. Comparison of PER performance of the proposed ODPM with conventional CE schemes in 

Highway NLOS channel model with a relative speed of 252km/h (16QAM 1/2, R=2). 
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Fig. 8. Comparison of PER performance of the proposed ODPM with WSUM-TDA as the number of 

antennas varies in Highway NLOS channel model with a relative speed of 252km/h (QPSK 1/2). 
 

 
Fig. 9. Comparison of PER performance of the proposed ODPM with WSUM-TDA as the number of 

antennas varies in Highway NLOS channel model with a relative speed of 252km/h (16QAM 1/2). 
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6. Conclusions 
In this paper, as a novel CE technique suitable for WAVE systems based on IEEE 802.11p, 
ODPM for multiple receiving antennas is proposed and its PER performance is demonstrated 
through numerical simulations. ODPM is superior to various conventional CE methods with 
regard to the PER performance. Especially, its euperiority is verified at all SNR regions, 
regardless of the modulation type. 
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