• Title/Summary/Keyword: pTEM

Search Result 465, Processing Time 0.027 seconds

[Retraction] Preparation of Methyl methacrylate/styrene Core-shell Latex by Emulsion Polymerization ([논문 철회] 유화중합에 의한 Methyl methacrylate/styrene계 Core-shell 라텍스 입자 제조에 관한 연구)

  • Kang, Don-O;Lee, Nae-Woo;Seul, Soo-Duk;Lee, Sun-Ryong
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.21-30
    • /
    • 2002
  • Core-shell polymers of methyl methacrylate/styrene pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl benzene sulfonate(SDBS) as an emulsifier using ammonium persulfate(APS) as an initiator. The characteristics of these core-shell polymers were evaluated. Core-shell composite latex has the both properties of core and shell components in a particle, where as polymer blonds or copolymers show a combined properties from the physical properties or two homopolymers. This unique behavior of core-shell composite latex can be used in many industrial fields. However, in preparation of core-shell composite latex, several unexpected phenomina are observed, such as, particle coagulation, low degree of polymerization, and formation of new particles during shell polymerization. To solve the disadvantages, we studied the effects of surfactant concentrations, initiator concentrations, and reaction temperature on the tore-shell structure or PMMA/PSt and PSt/PMMA. Particle size and particle size distribution were measured by using particle size analyzer, and the morphology of the core-shell composite latex was observed by using transmission electron microscope. Glass transition temperature($T_g$) was also measured by using differential scanning calorimeter. To identify the core-shell structure, pH of the composite latex solutions were measured.

Synthesis and Crystallization of Amorphous Calcium Carbonate by Gas-Liquid Reaction of System Ca($OH_2 O$)-$H_2$-$CO_2$ (Ca($OH_2$)-$H_2 O$-$CO_2$계의 기액반응으로부터 비정질 탄산칼슘의 합성 및 결정화)

  • Im, Jae-Seok;Kim, Ga-Yeon;Im, Goeng
    • The Journal of Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.73-87
    • /
    • 2004
  • The synthesis and crystallization of amorphous calcium carbonate($CaCO_3$.$nH_2 O$) obtained from gas-liquid reaction between aqueous solution of calcium hydroxide and carbon dioxide at 15~$50^{\circ}C$ are investigated by electrical conductometry, XRD and TEM. The results are as follows: The initial reaction products prior to the formation of precipitated calcium carbonate is amorphous calcium carbonate. The electrical conductivity values in the slurry are decreased during the formation of amorphous calcium carbonate which covers particle surface of calcium hydroxide and retard the dissolution of calcium hydroxide into the solution. that amorphous calcium carbonate is unstable in the aqueous solution and crystallizes finally to calcite by the through-solution reaction. While amorphous calcium carbonate crystallizes into chain-like calcite, the conductivity values are recovered rapidly and the apparent viscosity of slurry containing higher concentration of calcium hydroxide increase. At below pH 9.5, chain-like calcite separates into individual particles to form precipitated calcium carbonate. The formation and synthetic temperature range of amorphous calcium carbonate is most suitable a primary decreasing step(a-step) at $15^{\circ}C$ in the electrical conductometry.

  • PDF

Convergence study on the through inhibition of differentiation in 3T3-L1 cells of ethanol extract from Trichosanthes kirilowii Maxim. Root (하늘타리(Trichosanthes kirilowii Maxim.) 뿌리 에탄올 추출물의 3T3-L1 지방세포 분화 억제 융합연구)

  • Kim, Sung Ok;Jeung, Ji-Suk
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.3
    • /
    • pp.127-133
    • /
    • 2019
  • The ami of our study was on the anti-obesity effect of ethanol extract from Trichosanthes kirilowii Maxim root (TKM) in murine adipocytes, 3T3-L1 cells. This study focused on anti-adipogenic activity through inhibition of cell differentiation in 3T3-L1 cells treated TKM. 100 ug/ml of non-cytotoxic TEM remarkablely inhibited content of triglycerol and suppressed expressions of $C/EBP{\alpha}$, $PPAR{\gamma}a$ and SREBP-1c related with lipogenic transcription factors in theres 3T3-L1 cells compared to (-)control cells. As phosphorylations of AMPK and ACC were incerased, HSL and CPT-1 mRNA expression increased upon TKM treatment, which involved in inhibition of fatty acid synthase expression. In conclusion, these results indicate that TKM can inhibit mRNA and protein expression of lipogenic genes in 3T3-L1 adipocytes. Our study suggests that TKM has potential anti-obesity effects and is a convergence therapeutic functional agent with anti-adipogenic activity via hypolipogenesis.

Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium (병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응)

  • Song, Sang-Sun;Lee, Sun;Lee, Mi-Kyoung;Lim, Sung-Young;Cho, Min-Ho;Park, Young-Keun;Park, Kyeong-Ryang;Lee, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

  • PDF

EFFECT OF TEMPORARY CEMENT ON TENSILE BOND STRENGTH OF DENTIN BONDING AGENT (Temporary Cement가 상아질 접착제의 접착성능에 미치는 영향)

  • Chang, Heon-Soo;Cho, Kyeu-Zeung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.685-698
    • /
    • 1995
  • This study was conducted to the effect of temporary cement on the adhesiveness of dentin bonding agent to dentin surface. One hundred freshly extracted bovine mandibular incisors were grinded to expose flat labial dentin surface. The dentin surfaces were temporarized with either eugenol-containing temporary cement(TemBond and Zinc Oxide Eugenol cement) or non-eugenol temporary cement(Nogenol and TempBond NE) for 7days, and then the temporarization was removed with surgical currette and the exposed dentin surfaces were water-rinsed. Bonding specimens were made by use of All-Bond 2 and Super-Bond C&B dentin bonding agent, and stored in $37^{\circ}C$ distilled water for 24hours. The tensile bond strenth and the cohesive failure rate were measured, and then the pretreated dentin surfaces which the temporary cement had been applied to and removed from and the fractured dentin surfaces after bonding test were examined under scanning electron microscope. The results were as follows : In case of bonding with All-Bond 2, tensile bond strength of each experimental group was lower than that of the control group(p<0.05), but there was no significant difference between the bond strengths of the control group and each experimental group in case of bonding with Super-Bond C&B(p>0.05). No significant difference between tensile bond strength of experimental group, whether temporary cement contains eugenol or not, was seen(p>0.05). In case of bonding with All-Bond 2, the control group showed cohesive-adhesive mixed failure mode and the experimental groups mainly showed adhesive failure mode, but in case of bonding with Super-Bond C&B, almost of the control and the experimental groups mainly showed cohesive failure mode. On SEM examination, all of the dentin specimens pretreated with either 10 % phosphoric acid or 10% citric acid after application of the temporary cements demonstrated remnants of temporary cement attached to dentin surface.

  • PDF

Synthesis of Visible-working Pt-C-TiO2 Photocatalyst for the Degradation of Dye Wastewater (염료폐수 분해를 위한 가시광 감응형 Pt-C-TiO2 광촉매의 합성)

  • Hahn, Mi Sun;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.123-128
    • /
    • 2005
  • Among various metal oxides semiconductors, $TiO_2$ is the most studied semiconductor for environmental clean-up applications due to its unique ability in photocatalyzing various organic contaminants, its chemical inertness, and nontoxicity. $TiO_2$, however, has a few drawbacks to be solved such as reactivity mainly working under ultraviolet irradiation (${\lambda}$ < 387 nm) and electron - hole recombination on $TiO_2$. In this study, to extend the absorption range of $TiO_2$ into the visible range and enhance electron - hole separation, we synthesized platinum (Pt) deposited $C-TiO_2$. The presence of Pt as an electron sink has been known to snhance the separation of photogenerated electron-hole pairs and induce the thermal decomposition. The characterization of as-synthesized $Pt-C-TiO_2$ was performed by Transmission Electron Microscopic (TEM), the Brunuer-Emmett-Teller (BET) method, X-ray Diffractometer (XRD), UV-vis spectrometer (UV-DRS), and X-ray Photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photoelectron Spectroscopy (XPS). In order to estimate the photocatalytic activity of the synthesized materials, the photodegradation experiment of an azo dye (Acid Red 44; $C_{10}H_7N=NC_{10}H_3(SO_3Na)_2OH$)was carried out by using an Xe arc lamp (300 W, Oriel). A 420 nm cut-off filter was used for visible light irradiation. From the results, Pt-deposited $C-TiO_2$ showed a far superior phothdegradation activity to Degussa P25, the commercial product under the irradiation of visible light and enhanced photocatalytic activity of visible-working $C-TiO_2$. This is a useful result into the application for the purification system of dye wastewater using visible energy of sun light.

  • PDF

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.

Characterization and Identification of an Agar-Degrading Motile Bacteria Strain (Agar를 분해하는 swarming 박테리아 균주의 특성과 동정)

  • Kang, Sung-Wan;Yoo, Ah-Young;Yu, Jong-Earn;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.259-265
    • /
    • 2012
  • A bacterial strain, CK214, exhibiting high motility on an LB agar (1.5%, w/v) surface was isolated from the environment. The formation of unusual agar shrinking around colonies on agar plates was observed. The strain grew on minimal media containing pure agar as a sole carbon source. The cell-free culture supernatant of CK214 generated a reduced form of sugar in the in vitro reaction with the use of pure agar as a substrate, suggesting the secretion of an agar-degrading enzyme. The CK214 strain showed swarming motility on the solid media containing a wide range of concentrations of agar (0.5, 1.0, 1.5, 2.0% w/v). Various tests, including Gram staining, API analysis, and phylogenetic analysis based on 16S rDNA sequences identified that the CK214 strain was a G(+) rod-shaped bacterium grouped in genus Paenibacillus. Electron microscopic analysis demonstrated that the P. CK214 strain is peritrichously flagellated. Through transposon random mutagenesis, several agar-degrading activity defective mutants (ADMs) were generated. These mutants will be used in the future experimentation for the study of the correlation between agar-degrading activity and motility.

Stress Response of a Thermotolerant Alcohol-Fermenting Yeast Strain, Saccharomyces cerevisiae KNU5377, Against Inorganic Acids and Its Alcohol Fermentation Productivity Under the Presence of These Acids (고온 알코올발효 효모균주 Saccharomyces cerevisiae KNU5377의 무기산에 대한 스트레스반응 및 무기산 존재하의 알코올발효 생산능)

  • 윤혜선;백상규;김일섭;이인구;유춘발;진익렬
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.110-117
    • /
    • 2003
  • A thermotolerant yeast strain, Saccharomyces cerevisiae KNU5377 (abbreviated as KNU5377, was exposed to inorganic acids including sulfuric, nitric and hydrochloric acid. As a stressor, each inorganic acid is very easily dissociated in water, resulting in lowering environmental pH. When compared with a reference S. cerevisiae ATCC24858, KNU5377 could overcome such a severe condition containing a final 0.4% concentration of sulfuric acid or nitric acid to grow at the overnight culture, but this reference could not. Additionally, this strain showed a surprisingly strong tolerance by surviving despite of exposure to the regime of 0.35% of hydrochloric acid for over 90 min and also to 0.6% of sulfuric acid for 30 min. On the contrary, both strains could not survive against a final 0.45% concentration of nitric acid. This strain KNU5377 could produce ethanol of 3% in 2 days by using the fermentation medium containing a final 0.3% concentration of sulfuric arid. Moreover, change into a final 0.2% concentration of sulfuric acid caused this strain to enhance fermentation productivity up to about 4.5% even at $40^{\circ}C$. In exposure to a final 0.2% of sulfuric acid for 60 min, trehalose was most accumulated within 30 min in KNU5377, and this suggested a cellular defense system led by this disaccharide was profitable for this strain to lead to no morphological changes.

Fabrication of Silicon Quantum Dots in Si3N4 Matrix Using RF Magnetron Co-Sputtering (RF 마그네트론 코스퍼터링을 이용한 Si3N4 매트릭스 내부의 실리콘 양자점 제조연구)

  • Ha, Rin;Kim, Shin-Ho;Lee, Hyun-Ju;Park, Young-Bin;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.606-610
    • /
    • 2010
  • Films consisting of a silicon quantum dot superlattice were fabricated by alternating deposition of silicon rich silicon nitride and $Si_3N_4$ layers using an rf magnetron co-sputtering system. In order to use the silicon quantum dot super lattice structure for third generation multi junction solar cell applications, it is important to control the dot size. Moreover, silicon quantum dots have to be in a regularly spaced array in the dielectric matrix material for in order to allow for effective carrier transport. In this study, therefore, we fabricated silicon quantum dot superlattice films under various conditions and investigated crystallization behavior of the silicon quantum dot super lattice structure. Fourier transform infrared spectroscopy (FTIR) spectra showed an increased intensity of the $840\;cm^{-1}$ peak with increasing annealing temperature due to the increase in the number of Si-N bonds. A more conspicuous characteristic of this process is the increased intensity of the $1100\;cm^{-1}$ peak. This peak was attributed to annealing induced reordering in the films that led to increased Si-$N_4$ bonding. X-ray photoelectron spectroscopy (XPS) analysis showed that peak position was shifted to higher bonding energy as silicon 2p bonding energy changed. This transition is related to the formation of silicon quantum dots. Transmission electron microscopy (TEM) and electron spin resonance (ESR) analysis also confirmed the formation of silicon quantum dots. This study revealed that post annealing at $1100^{\circ}C$ for at least one hour is necessary to precipitate the silicon quantum dots in the $SiN_x$ matrix.