Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium

병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응

  • Song, Sang-Sun (Department of Microbiology, Han Nam University) ;
  • Lee, Sun (Department of Microbiology, Han Nam University) ;
  • Lee, Mi-Kyoung (Department of Microbiology, Han Nam University) ;
  • Lim, Sung-Young (Department of Microbiology, Han Nam University) ;
  • Cho, Min-Ho (Department of Microbiology, Han Nam University) ;
  • Park, Young-Keun (Graduate School of Biotechnology, Korea University) ;
  • Park, Kyeong-Ryang (Department of Microbiology, Han Nam University) ;
  • Lee, In-Soo (Department of Microbiology, Han Nam University)
  • 송상선 (한남대학교 미생물학과) ;
  • 이선 (한남대학교 미생물학과) ;
  • 이경미 (한남대학교 미생물학과) ;
  • 임성영 (한남대학교 미생물학과) ;
  • 조민호 (고려대학교 생명공학원) ;
  • 박용근 (한남대학교 미생물학과) ;
  • 박경량 (한남대학교 미생물학과) ;
  • 이인수 (한남대학교 미생물학과)
  • Published : 2001.09.01

Abstract

The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

Salmonella enterica serovar Typhimurium의 대수 생장기 산 적응기전(acid tolerance response; ATR)은 pH 4.5 이하 조건에서 산 적응결과 형성된 것이며, 이것은 세균세포가 강한 산성환경에 노출되었을 때 생존율을 높일 수 있는 기전이다. ATR은 세균의 생장단계에 따라 대수 생장기 ATR과 생장 정지기 ATR로 구분되어질 수 있으며, 각 생장 단계는 산 적응 과정에서 합성되는 고유의 ASP (acid shock protein)가 존재한다. ATR 기전은 낮은 온도 등과 같은 환경조건에 영향을 받는다는 것이 본 실험 결과를 통하여 발견되었다. 낮은 온도 및 약산성 조건에 노출되었을 경우 강한 산성 조건에서 세균의 생존율은 증가하는 양상을 보였으며, 이때의 생존율은 $37^{\circ}C$에서 보여졌던 것보다 높게 나타났다. $25^{\circ}C$에서 산 적응을 하지 않은 경우의 세균은 $37^{\circ}C$와 비교하였을 경우 약 10,000배 정도의 생존율 증가를 보여주었다. 산 내성 반응에 주요한 기능을 담당하는 rpoS 돌연변이주의 산 내성도는 $37^{\circ}C$의 결과와 비교해블 때 저온의 조건에서 산 내성능이 높게 나타났다. 비륵 rpoS 돌연변이주가 저온에서 산 적응 여부에 관계없이 pH 3.1에서 유사한 ATR 양상을 보여주고 있지만, $25^{\circ}C$의 산성 조건에서 rpoS$\Omega$Ap 돌연변이주는 지속적 산 내성도를 나타내지 않음으로써 저온에서도 rpoS 의존성 ATR 기전이 존재하고 있다는 것을 알 수 있었다. 결과적으로 저온 조건에서는 rpoS의존적 및 -비의존적 ATR기전 모두가 존재하는 것으로 여겨진다. 저온 조건과 ATR의 기초연구를 위해서 병원성 5. enterica serovar Typhimurium UK1에서 low temperature acid tolerance (lat) 유전자를 P22-MudJ(Km, lacZ)를 이용한 lacz 오페론 융합법을 사용하여 LF452 latA::MudJ를 분리하였다. LF452 latA::MudJ 돌연변이주는 저온에서 산 적응기전을 보유하지 않았으며, 결과적으로 latA는 $25^{\circ}C$에서 산 적응 내성 기전에 관여하는 중요 유전자로 판단되며, latA의 유전자는 Salmonella Genetic Map상의 21.5 min에 위치하고 있다.

Keywords

References

  1. J. Bacteriol. v.165 Oxygen regulated stimulons of Salmonella Typhimuriun identified by MudJ (Ap, lacZ) operon fuisions Aliabadi, Z.;F. Warren;S. Mya;J.W. Foster
  2. J. Bacteriol. v.170 Novel regulatory loci controlling oxygen and pH regulated gene expression in S. Typhimurium Aliabadi, Z.;Y.K. Park;J.L. Slonczewski;J.W. Foster
  3. J. Microbiol. v.33 Identification of the genes involved in stationary-phase specific acid resistance of Salmonella Typhimurium Bang I.S.;I.S. Lee;Y.N. Lee;Y.K. Park
  4. J. Bacteriol. v.174 Rapid mapping in Salmonella ryphi with MudJ-P22 prophages Benson, M.R.;B.S. Goldman
  5. Korean J. Microbiol. v.34 Expression control of ssaJ and ssaK of SPI2 in Salmonella Typhimurium Choi, H. J.;J.H. Eom;I.S. Lee;K.R. Park;Y.K. Park
  6. Science v.243 A Salmonella locus that controls resistance to microbial proteins from phagotic cells Fields P.I.;E.A. Groisman;F. Heffron
  7. J. Bacteriol. v.172 Adaptive acidification tolerance response of Salmonella Typhimurium Foster, J.W.;H.K. Hall
  8. J. Gen. Microbiol. v.140 Regulatory circuits involved with pH-regulated gene expression in Salmonella Typhimurium Foster, J.W;Y.K. Park;I.S. Bang;K. Karem;H. Bettes;H.K. Hall;E. Shaw
  9. Ann. Rev. Genet. v.18 Bacterial regulation ; Global regulatory networks Gottesman, S.
  10. Immunol. v.13 Acid-regulated proteins induced by Streptococcus mutans and other bacteria during acid shock Hamilton, I.R.;G. Syensater
  11. J. Bacteriol. v.152 Bacteriophage P22 as a vector for Mu mutagenesis in Salmonella Typhimurium; isolation of nad-lac and pnc-lac gene fusions Holly, E.A.;J.W. Foster
  12. Korean J. Life Science v.8 Genetic Responses to Metal Ion in Salmonella Typhimurium Jung, J.R.;K.R. Park;S.K. Koh;Y.K. Park;I.S. Lee
  13. Korean J. Life Science v.9 Anaerobic acid tolerance response in Salmonella Typhimurium Kim, Y.C.;S. Lee;K.M. Lee;S.Y. Lim;Y.K. Park;H.S. Baik;K.R. Park;I.S. Lee
  14. Molecular Microbiol. v.17 The stationary-phase sigma factor σ(RpoS) is required for sustained acid tolerance response in virulent Salmonella Typhimurium Lee I.S.;J. Lin;H.K. Hall;B. Bearson;J.W. Foster
  15. J. Bacteriol. v.176 A low-pH-inducible, stationary-phase acid tolerance response in Salmonella Typhimurium Lee I.S.;J. Lin. lonczewski;J.W. Foster
  16. J. Bacteriol. v.177 Comparative analysis of extreme acid survival in Salmonella Typhimurium, Shigella flexneri, and Escherichia coli Lin J.;I.S. Lee;J. Frey;J.L. Slonczewski;J.W. Foster
  17. J. Bacteriol. v.183 The Toxr-mediated organic acid tolerance response of Vibrio cholerae requires OmpU Merrell, D.S.;C. Bailey;J.B. Kaper;A. Camilli
  18. Proc. Natl. Acad. Sci. v.86 A two-componant regulatory system (phoP, phoQ) controls Salmonella Typhimurium virulence Miller, S.I.;A.M. Kukral;J.J. Mekalanos
  19. Infec. Immun. v.47 Passage of Salmonella uteritidis and Salmonella thonupson though chick ilecoceal mucosa Popiel, I.;P.C.B. Turnbull
  20. Proc. Natl. Acad. Sci. v.74 DNA sequencing with chain terminating inhibitors Sange, F.;S. Nicken;A.R. Coulson
  21. J. Bacteriol. v.168 Global control in Salmonella Typhimurium: Two dimensional electrophoretic analysis of starvation, anaerobiosis, and heat shock inductive proteins Spector, J.;Z. Aliabadi;T. Gonzalez;J.W. Foster
  22. Current Top. Microbiol. Immunol. v.124 Genetic determinants of bacterial virulence with special reference to Salmonella Stocker, B.A.D.;P.H. Makela
  23. Microbiol. v.146 Multiple stress responses in Streptococcus mutans and in the induction of general and stress-specific proteins Svensater, G.;B. Sjogreen;I.R. Hamilton
  24. J. Biol. Chem. v.93 Aetylornithase of Escherichia coli; partial purification and some properties Vogel, H.J.;D.M. Bonner
  25. Genetic v.118 Packaging specific segments of the Salmonella chromosome with lacked in Mud-P22 prophages Youderian, P.;P. Braier;K.L. Sugino;N.P. Higgins;T. Elliot
  26. J. Bacteriol. v.173 Inducible pH homeostasis and the acid tolerance respones of Salmonella Typhimurium Foster, J.W.;H.K. Hall