DOI QR코드

DOI QR Code

Stress Response of a Thermotolerant Alcohol-Fermenting Yeast Strain, Saccharomyces cerevisiae KNU5377, Against Inorganic Acids and Its Alcohol Fermentation Productivity Under the Presence of These Acids

고온 알코올발효 효모균주 Saccharomyces cerevisiae KNU5377의 무기산에 대한 스트레스반응 및 무기산 존재하의 알코올발효 생산능

  • 윤혜선 (경북대학교 생명공학부 미생물학과) ;
  • 백상규 (경북대학교 생명공학부 미생물학과) ;
  • 김일섭 (경북대학교 생명공학부 미생물학과) ;
  • 이인구 (경북대학교 농과대학 농화학과) ;
  • 유춘발 (대구대학교 공과대학 식품공학과) ;
  • 진익렬 (경북대학교 생명공학부 미생물학과)
  • Published : 2003.02.01

Abstract

A thermotolerant yeast strain, Saccharomyces cerevisiae KNU5377 (abbreviated as KNU5377, was exposed to inorganic acids including sulfuric, nitric and hydrochloric acid. As a stressor, each inorganic acid is very easily dissociated in water, resulting in lowering environmental pH. When compared with a reference S. cerevisiae ATCC24858, KNU5377 could overcome such a severe condition containing a final 0.4% concentration of sulfuric acid or nitric acid to grow at the overnight culture, but this reference could not. Additionally, this strain showed a surprisingly strong tolerance by surviving despite of exposure to the regime of 0.35% of hydrochloric acid for over 90 min and also to 0.6% of sulfuric acid for 30 min. On the contrary, both strains could not survive against a final 0.45% concentration of nitric acid. This strain KNU5377 could produce ethanol of 3% in 2 days by using the fermentation medium containing a final 0.3% concentration of sulfuric arid. Moreover, change into a final 0.2% concentration of sulfuric acid caused this strain to enhance fermentation productivity up to about 4.5% even at $40^{\circ}C$. In exposure to a final 0.2% of sulfuric acid for 60 min, trehalose was most accumulated within 30 min in KNU5377, and this suggested a cellular defense system led by this disaccharide was profitable for this strain to lead to no morphological changes.

고온내성을 가진 효모 균주, Saccharomyces cerevisiae KNU5377을 황산, 질산 그리고 염산에 노출시켰다. 스트레스 원으로써 무기산은 물에서 쉽게 해리되어 외부 산도를 떨어뜨린다. 여러 가지 무기산이 첨가된 조건에서 배양한 결과 KNU5377은 0.4%의 황산, 질산 농도에서 생육이 가능한 반면 대조 균주인 S. cerevisiae ATCC24858은 이 보다 낮은 농도인 0.3%가 생육의 한계였다. 더욱이 KNU5377은 0.35%의 염산에서 90분 이상, 0.6%의 황산에서는 30분 이상 생존이 가능한 높은 내성을 나타내었다. 반면에 두 균주 모두 0.45%의 질산에서는 생존하지 못하였다. 0.3%의 황산이 첨가된 조건에서 알코올 발효 시 KNU5377은 이틀 후 3%의 알코올을 생산하였다. 더욱이 0.2%의 황산 첨가와 동시에 $40^{\circ}C$ 고온에서도 4.5%의 높은 알코올 생산이 관찰되었다. 또한 황산 0.2%에 한 시간동안 노출시킨 뒤 세포내에 축적되는 trehalose의 농도를 측정한 결과, KNU5377에서는 30분내에 효과적으로 축적되었으며 동일한 스트레스 조건에서 전자현미경(TEM)을 통한 세포의 형태의 관찰 시 어떠한 변화도 나타나지 않았다.

Keywords

References

  1. FEBS lett. v.225 Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response Attfield, P. V. https://doi.org/10.1016/0014-5793(87)81170-5
  2. Nat. Biotechnol. v.15 Stress tolerance : the key to effective strains of industrial bakers yeast Attfield P. V. https://doi.org/10.1038/nbt1297-1351
  3. Adv. Carbohydr. Chem. Biochem. v.30 The metabolism of α, α trehalose Elbein, A. D. https://doi.org/10.1016/S0065-2318(08)60266-8
  4. Eur. J. Biochem. v.219 The role of trehalose synthesis for the acquisition of thermotolerance in yeast. 2. Physiological concentrations of trehalose increase the thermal stability of proteins in vivo Hottiger, T.;C. De Vigilio;M. N. Hall;T. Boller;A. Wiemken https://doi.org/10.1111/j.1432-1033.1994.tb19929.x
  5. Candida tropicalis. Cell Struct. Funct. v.17 Immunoelectron microscopic localization of thiolases, beta-oxidation enzymes of an n-alkane-utilizable yeast Kamasawa, N.;N. Naito;T. Kurihara;Y. Kamada;M. Ueda;A. Tanaka;M. Osumi https://doi.org/10.1247/csf.17.203
  6. Kor. J. Appl. Microbiol. Biotechnol. v.23 Isolation of Saccharomyces cerevisiae F-38-1, a thermotolerant yeast for fuel alcohol production at high temperature Kim, J. W.;I. Jin;J. H. Seu
  7. Kor. J. Appl. Microbiol. Biotechnol. v.23 The fermentation characteristics of Saccharomyces cerevisiae F-38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature Kim, J. W.;S. H. Kim;I. Jin
  8. FEBS Lett. v.360 Phenotypic features of trehalase mutants in Saccharomyces cerevisiae Nwaka, S.;B. Mechler;M. Destruelle;H. Holzer https://doi.org/10.1016/0014-5793(95)00105-I
  9. J. Biol. Chem. v.270 Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae Nwaka, S.;M. Kopp;H. Holzer https://doi.org/10.1074/jbc.270.17.10193
  10. Prog. Nucleic. Acid Res. Mol. Biol. v.58 Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae Nwaka, S.;H. Holzer
  11. Appl. Biochem. Biotech. v.45 Microbial liquefaction of lignite pretreated with diluted acid at elevated temperature and pressure Rao, A.;A. Maxey;B. B. Elmore;H. K. Huckabay https://doi.org/10.1007/BF02941789
  12. Kor. J. Appl. Microbiol. Biotechnol. v.17 Ethanol fermentation of fusion between heterologous transformant of Saccharomyces cerevisiae and Candida tropicalis in mini-jar Seu, J. H.;Y. H. Kim
  13. Trends Biotechnol. v.16 Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose Singer, M. A.;S. Lindquist https://doi.org/10.1016/S0167-7799(98)01251-7
  14. Annu. Rep. ICBiotech. v.20 Genetic improvement of acid-tolerant Saccharomyces cerevisiae for ethanol production from xylose and lignocellulosic hydrolysate: Part 2 Random mutagenesis of the xylose reductase gene Trantirungkij, M.;S. Limtong;T. Seki;T. Yoshida
  15. Antonie Van Leeuvenhoek Int. J. Gen. Mol. Microbiol. v.58 Trehalose in yeast, stress protectant rather than reserve carbohydrate Wiemken, A. https://doi.org/10.1007/BF00548935
  16. NREL/TP-580-26157 Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios Wooley, R.;R. Mark;S. John;;I. Kelly