• Title/Summary/Keyword: pH variation

Search Result 1,305, Processing Time 0.03 seconds

Effect of pH on Swelling Property of Hyaluronic Acid Hydrogels for Smart Drug Delivery Systems

  • Kim, Jin-Tae;Lee, Deuk-Yong;Kim, Young-Hun;Lee, In-Kyu;Song, Yo-Seung
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Hyaluronic acid(HA) hydrogels were synthesized by immersing HA microbeads in phosphate buffered saline solutions having different pH levels to assess the effect of pH on the swelling ratio of HA hydrogels for smart drug delivery systems. No beads were formed when the HA solution(below pH 9) was crosslinked with divinyl sulfone(DVS) because DVS is a basic solution. The variation regarding the size of the microbead was not significant, suggesting that the bead size is not a function of pH(10 ~ 14). However, the pore size of the microbeads decreased with increasing pH from 10 to 14, leading to the surface smoothness and dense network as a result of higher crosslinking. The swelling ratio of hydrogels increased when the pH rose from 2(acidic) to 6(neutral). Afterwards, it decreased with further increasing pH(basic). The lower swelling ratio may be due to the lack of ionization of the carboxyl groups. On the other hand, a higher swelling ratio is likely due to the increased electrostatic repulsions between negatively charged carboxyl groups on different chains. Experimental results suggested that pH-responsive HA hydrogels can be applicable to the controlled drug delivery systems.

Seasonal Variations of Water Quality within the Waste Impoundments of Geopung Mine (거풍 폐광산 폐기물 적치장 지하수 및 침출수 수질의 시기별 변화)

  • Ahn, Joo-Sung;Yim, Gil-Jae;Cheong, Young-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.3
    • /
    • pp.207-216
    • /
    • 2009
  • In this study, water quality variation in borehole groundwaters and surface leachate waters were investigated on a seasonal sampling and remote monitoring basis within the waste impoundments at the Geopung mine site where previous rehabilitation measures were unsuccessful to prevent acidic drainage. All groundwaters were typical acidic drainage with acidic pH (3.3${\sim}$4.6) and high TDS (338${\sim}$3330 mg/L) values during the dry season, but increases in metal contents (TDS 414${\sim}$4890 mg/L) and decrease of pH (2.7${\sim}$3.6) were observed during the rainy season. Surface leachate waters showed a similar pattern in water quality variation. Surface runoff waters during rain events had acidic pH (3.0${\sim}$3.4) through direct reactions with waste rocks. Good correlations were found between major and trace elements measured in water samples, but no significant seasonal variation in chemical compositions was shown except relative changes in contents. It can be suggested that dissolution of soluble secondary salts caused by flushing of weathered waste rocks and tailings directly influenced the water quality within the waste impoundments. Increases in acid and metal concentrations and their loadings from mine wastes are anticipated in the rainy season. More appropriate cover systems on waste rocks and tailings necessitate consideration of more extreme conditions in the study mine.

Effect of Cultural Conditions on Polysaccharide Production and its Monosaccharide Composition in Phellinus linteus L13202 (배양 조건에 따른 상황 버섯의 다당류 생산 및 단당류 구성 변화)

  • Lee, Jae-Hoon;Cho, Soo-Muk;Ko, Kyung-Soo;Yoo, Ick-Dong
    • The Korean Journal of Mycology
    • /
    • v.23 no.4 s.75
    • /
    • pp.325-331
    • /
    • 1995
  • The effect of cultural conditions on mycelial growth, polysaccharide production in Phellinus linteus and its monosaccharide composition was studied. P. linteus showed the highest growth (0.9 g/100 ml) on glucose but the polysaccharide production was the highest (13.7%) on mannose. The fungus grew very well at neutral pH (0.9 g/100 ml) but the growth was reduced to 0.47 g per 100 ml at alkaline pH. For the different pH, the yield of polysaccharide was in the range of $5{\sim}8%$. The highest yield of 7.94% was obtained at pH 5. Also a variation in monosaccharide composition was observed for different carbon sources and pH. The composition ranges of glucose, mannose, and galactose of polysaccharide were $80{\sim}95%,\;3{\sim}12%,\;and\;2{\sim}10%$ depending on carbon sources, respectively. In contrast, the variation of composition range of three monosaccharides was narrower for different pH than that for carbon sources. These results suggested the possibility of the improvement of production and the physiological modification of the polysaccharide.

  • PDF

Modeling the Chemical Kinetics of Atmospheric Plasma

  • Kim, Ho-Yeong;Lee, Hyeon-U;Kim, Gyu-Cheon;Lee, Jae-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.270-270
    • /
    • 2012
  • Low temperature atmospheric pressure plasmas (APPs) have been known to be effective for living cell inactivation in the water [1]. Many earlier research found that pH level of the solution was changed from neutral to acidic after plasma treatment. The importance of the effect of acidity of the solution for cell treatments has already been reported by many experiments. In addition, several studies have demonstrated that the addition of a small amount of oxygen to pure helium results in higher sterilization efficiency of APPs [2]. However, it is not clear yet which species are key factors for the cell treatment. To find key factors, we used GMoo simulation. We elucidate the processes through which pH level in the solution is changed from neutral to acidic after plasma exposure and key components with pH and air variation with using GMoo simulation. First, pH level in a liquid solution is changed by He+ and He(21S) radicals. Second, O3 density decreases as pH level in the solution decreases and air concentration decreases. It can be a method of removing O3 that cause chest pain and damage lung tissue when the density is very high. H2O2, HO2 and NO radicals are found to be key factors for cell inactivation in the solution with pH and air variation.

  • PDF

The Bacterial Communities Structure and Its Environmental Determinants in Lake Soyang (소양호 세균군집구조와 그 구조에 영향을 주는 환경요인)

  • 김동주;홍선희;최승익;안태석
    • Korean Journal of Microbiology
    • /
    • v.36 no.2
    • /
    • pp.136-141
    • /
    • 2000
  • The temporal variation of bacterial community and environmental factors, affecting on bacterial community structure were estimated monthly kom April, 1998 to May, 1999. Bacterial community structures were determined by in situ hyblidization with rRNA-targeted fluorescently labeled oligonucleotide probes (FISH) and epifluorescence microscopy; and the statistical analysis was done by SPSS program. The oligonucleotide probes used in this study were EUB338, ALFlb, GAM42a, and CF. In surface water, $\alpha$-group was related to only DOC (-0.538, p<0.05) and Chlorophyll a concentration was related to y-group (-0.630, p$\beta$-group and Cytophaga-Flavobacterium group were related to water temperature as 0.665, and 0.685 @<0.05). Between pH and $\beta$-group, there was a positive relationship (0.541, p<0.05), and Cytophaga-Flavobactevizim group was represent to correlation (0.672, p

  • PDF

Variation of Rock Properties in Acidic Solution and Loading Condition (산성수 침수 및 하중 조건에서의 암석물성변화 연구)

  • Chung, Jae Hong;Park, Seung Hun;Lee, Seung Jun;Yu, Seungwon;Lee, Woo Hee;Kwon, Sangki
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.154-165
    • /
    • 2016
  • This paper presents experimental results to investigate the affects of acidic solution under loading condition on rock properties. In the experiment, the variations of various rock properties including effective porosity, thermal conductivity, and etc were investigated with different pHs of solution and magnitudes of loading. The results show that the rock property change was increased with low pH under loading. It was predicted that chemical reaction rate would be increased in low pH. Below the crack initiation stress of the rock specimen, the variation of rock property change was reduced with increased loading. It could be explained with the reduced chemical reaction area by the compressional loading if there is no crack generation.

A Study on the Surface Activation and Quick-setting Characteristics of Blast Furnace Slag (Blast furnace slag의 표면 활성화 특성 및 quick-setting 특성에 관한 연구)

  • Lee, Woong-Geol;Song, Yung-Sin;Kang, Hyun-Ju;Choi, Hun;Song, Yong-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.273-274
    • /
    • 2010
  • This study investigated on the early hydration and physical characteristics of blast furnace slag through pH variation. The pH values applied to the experiments were, 12.0 and 13.0 which are the pH values of OPC, and type 3 of pH 14.0 which is a strong alkali condition. A paste and mortar method was used to test blast furnace slag and blast furnace slag containing 2wt% of gypsum. It was found that CAH and CSH phases were formed as key hydrates during the early hydration of blast furnace slag, and ettringites were produced extra during the early hydration of blast furnace slag containing 2wt% of gypsum.

  • PDF

Fabrication and Calibration of pH Sensor Using Suspended CNT Nanosheet (부양형 탄소나노튜브 나노시트를 이용한 pH센서의 제작과 보정)

  • Ryu, Hyobong;Choi, WooSeok;An, Taechang;Heo, Joonseong;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.207-211
    • /
    • 2013
  • In this research, the pH sensor was developed using CNT nanosheet with Nafion coating for the advanced medical sensor such as a blood gas analyzer. The CNT nanosheet was formed by dielectrophoresis and water-meniscus between cantilever-type electrodes. Then, the process of the heat annealing and the Nafion coating was conducted for reducing contact resistance and giving proton selectivity respectively. We measured the response of the pH sensor as the electrolyte-gated CNT-nanosheet field effect transistor. The sensor showed a linear current ratio in a similar range of the normal blood pH. A calibration method for decreasing of the response variation among sensors has also been introduced. Coefficient of variance of the pH sensor was decreased by applying the calibration method. A linear relation between the calibrated response of the sensors and pH variance was also obtained. Finally, the pH sensor with a high resolution was fabricated and we verify the feasibility of the sensor by applying the calibration method.

PROPERTIES OF LOW-PH CEMENT GROUT AS A SEALING MATERIAL FOR THE GEOLOGICAL DISPOSAL OF RADIOACTIVE WASTE

  • Kim, Jin-Seop;Kwon, S.;Choi, Jong-Won;Cho, Gye-Chun
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.459-468
    • /
    • 2011
  • The current solution to the problem of using cementitious material for sealing purposes in a final radioactive waste repository is to develop a low-pH cement grout. In this study, the material properties of a low-pH cement grout based on a recipe used at ONKALO are investigated by considering such factors as pH variation, compressive strength, dynamic modulus, and hydraulic conductivity by using silica fume and micro-cement. From the pH measurements of the hardened cement grout, the required pH (< pH 11) is obtained after 130 days of curing. Although the engineering properties of the low-pH cement grout used in this study are inferior to those of conventional high-pH cement grout, the utilization of silica fume and micro-cement effectively meets the long-term environmental and durability requirements for cement grout in a radioactive waste repository.

Numerical Simulation on Buffering Effects of Ultrathin p-${\mu}c$-Si:H Inserted at the p-a-SiC:H/i-a-Si:H Interface of Amorphous Silicon Solar Cells (비정질 실리콘 태양전지의 p-a-SiC:H/i-a-Si:H 계면에 삽입된 P형 미세 결정 실리콘의 완충층 효과에 대한 수치 해석)

  • Lee, Chang-Hyun;Lim, Koeng-Su
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.11-20
    • /
    • 2000
  • To get more insight into the buffering effects of the p-${\mu}c$-Si:H Inserted at the p-a-SiC:H/i-a-Si:H interface, we present a systematic numerical simulation using Gummel-Schafetter method. The reduced recombination loss at the p/i interface due to a constant bandgap buffer is analysed in terms of the variation of the p/i Interface region with a short lifetime and the characterisitics of the buffer such as mobility bandgap, acceptor concentration, and D-state density. The numerical modeling on the constant bandgap buffer demonstrates clearly that the buffering effects of the thin p-${\mu}c$-Si:H originate from the shrinkage of highly defective region with a short lifetime in the vicinity of the p/i interface.

  • PDF