• Title/Summary/Keyword: pH stable

Search Result 2,319, Processing Time 0.029 seconds

Comparison of enzyme activities of the native and N-terminal 6xHis-tagged Fe supreoxide dismutase from Streptomyces subrutilus P5 (Streptomyces subrutilus P5의 천연 Fe superoxide dismutase와 N-말단 6xHis-태그가 결합된 Fe superoxide dismutase의 활성비교)

  • Park, Joong-ho;Kim, Jae-heon
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.230-235
    • /
    • 2016
  • This study was carried out to analyze the differences in enzyme activity and stability between the native Fe superoxide dismutase (FeSOD) and the 6xHis-tagged superoxide dismutase (6xHis-FeSOD) of Streptomyces subrutilus P5. The optimum pHs for both native FeSOD and 6xHis-FeSOD were 7, while the pH range of the activity was narrower for the 6xHis-FeSOD. The native FeSOD was stable at pH 4-9, but the 6xHis-FeSOD lost its stability at pH > 9. The temperatures of the optimum activities were same for both types of enzymes. However, the heat stability of the 6xHis-FeSOD was clearly decreased; even at $20^{\circ}C$ the enzyme lost the activity after 360 min. In contrast, the native FeSOD was stable after 720 min at below $40^{\circ}C$. $H_2O_2$ inhibition was occurred already at 0.5 mM for the 6xHis-tagged enzyme. Therefore, from the results that the 6xHis-FeSOD retained the enzyme activity at pH 6-7 and $20-40^{\circ}C$, it can be assumed that the protein structure became destabilized under different storage conditions and sensitive to the enzyme inhibitor.

Stable Isotope Labeled Cytochrome $c_3$ from Desulfovibrio vulgaris on a Defined Medium as Sole Nitrogen Source

  • Kim, Andre;Shim, Yoon-Bo;Kang, Shin-Won;Park, Jang-Su
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.506-509
    • /
    • 2000
  • To obtain Cytochrome $c_3$ labeled with a stable isotope, the conditions of cultivation and the composition of medium for DvMF were examined. The growth of DvMF was steady and reproducible under purging with $N_2$ and under pH control. DvMF was able to go on a defined medium without natural products. The composition of the medium containing a small amount of $NH_4Cl$ as sole nitrogen source was established. Then, uniformly $^{15}N-labeled$ Cytochrome $c_3$ was obtained during the culture of DvMF in a defined medium with $^{15}NH_4Cl$; it was confirmed by $^{1}H-^{15}N$ HMQC.

  • PDF

Plasmid-associated Bacteriocin Production by Leuconostoc sp. LAB145-3A Isolated from Kimchi

  • Choi, Yeon-Ok;Ahn, Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.409-416
    • /
    • 1997
  • Leuconostoc sp. LAB145-3A isolated from kimchi produced a bacteriocin which was active against food pathogens, such as Listeria monocytogenes, Enterococcus faecalis, and E. faecium. Bacteriocin production occurred during the early exponential phase of growth and was stable upto the late stationary phase of growth. Optimum conditions for bacteriocin production were $37^{\circ}C$ with an initial pH of 7.0. The bacteriocin of LAB145-3A was sensitive to proteases, but stable for solvents, pH change and heat treatment. It was stable even at autoclaving temperature for 15 min. The bacteriocin exhibited a bactericidal mode of action against Lactobacillus curvatus LAB170-12. The bacteriocin produced by Leuconostoc sp. LAB145-3A was purified by CM-cellulose cation exchange column chromatography and Sephadex G-50 gel filtration. The purification resulted in an approximate 10,000-fold increase in the specific activity. Approximately 4% of the initial activity was recovered. Purified bacteriocin exhibited a single band on the SDS-PAGE with an apparent molecular weight of 4,400 daltons. This bacteriocin was named leucocin K. Leuconostoc sp. LAB145-3A had two residential plasmids with molecular sizes of 23 kb and 48 kb. A comparison of plasmid profiles between LAB145-3A and its mutants revealed that the 23 kb plasmid (pCA23) was responsible for bacteriocin production and immunity to the bacteriocin in Leuconostoc sp. LAB145-3A.

  • PDF

Partial Purification and Some Properties of Carboxymethyl Cellulases from Alkalophilic Cephalosporium sp. RYM-202 (호알칼리성 Cephalosporium sp. RYM-202가 생산하는 carboxymethyl cellulase의 부분정제 및 특성)

  • Kang, Myoung-Kyu;Park, Hee-Moon;Rhee, Young-Ha;Kim, Yun-Seog;Kim, Yeo-Kyung
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.301-309
    • /
    • 1993
  • An alkalophilic Cephalosporium sp. RYM-202 capable of producing cellulase components was isolated from soil. This organism grew best at an initial pH 9.0 and produced cellulase maximal at an initial pH 9.5-10.0. Three carboxymethyl cellulases(CMCases), P-I-I, P-I-II and P-II-I, were partially purified by DEAE-Sephadex A-50 ion exchange column followed by Sephadex G-150 gel filtration. The optimum pH values for activity were 7.5 for P-I-I, 8.0-9.5 for P-I-II and 7.5-10.0 for P-II-I. All CMCases were stable between pH 4.5 and 12.0. Temperature optima for activity ranged between 40 and $60^{\circ}C$ and more than 50% of the maximum activity was observed at $20^{\circ}C$ for both of P-I-I and P-II-I. The activity of CMCases was significantly stable in the presence of various laundry components, such as, surfactants, chelating agents and alkaline proteinases.

  • PDF

Isolation of Bacillus sp. Producing Pullulanase and Culture Conditions for Production and Properties of the Enzyme (Pullulanase를 생산하는 Bacillus 속 세균의 분리와 효소의 최적 생산조건 및 특성)

  • 정희경;김병우
    • Journal of Life Science
    • /
    • v.6 no.2
    • /
    • pp.79-86
    • /
    • 1996
  • A bacterium producing pullulanase was from soil, and was identified Bacillus cereus and named as Bacillus cereus JK36. The optimal culture conditions for the efficident production of pullulanase from B. cereus JK36 was obtained by cultivating with the medium composed of 1% pullulan, 1% teast extract, 1% bactopeptone, 0.1% NaH$_{2}$PO$_{4}$, 2H$_{2}$O, 0.02% MgSO$_{4}$\ulcorner7H$_{2}$O at 40$\circ$C, initial pH 6.5 for 70 hours. Using the culture supernatant as crude enzyme, the optimal pH and temperature of the pullulanase of this strain were 6.5 and 50$\circ$C. In effect of pH and temperature on the stability of the enzyme, the enzyme was stable in the range of pH6.0$\sim$9.5 and up to 40$\circ$C, respectively. The hydrolysis product on pullulan was mainly maltotriose.

  • PDF

Processing Conditions of Low-Salt Fermented Squid and Its Flavor Components 3. Characterization of Protease Produced by Pseudomonas D2 Isolated from Squid Jeotkal (저염 오징어젓갈 제조 방법 및 향미 성분 3. 오징어젓갈에서 분리한 Pseudomonas D2가 생성하는 Protease의 효소학적 특성)

  • 허성호;이호재;김형선;최성희;김영만
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.636-641
    • /
    • 1995
  • Proteolytic activities were compared using three species involving in squid jeotkal fermentation and showing positive reaction upon casein test : Pseudomonas D2, Flavovacterium odoratum and Acinetobacter calcoaceticus. Pseudomonas D2 produced highest activity of protease at 72h when incubated in our own modified medium(polypeptone, 0.5% ; tryptone, 0.5% ; NaCl, 3% ; pH, 7.5). Thus, this specie was selected for the further study. The growth pattern was coincided with the production of protease. Thus purification of protease was proceeded by ethanol precipitation, sephadex G-100 gel filtration, and DEAE sepharose ion exchange chromatography. The purified protease showed highest activity at pH 7.0 and 5$0^{\circ}C$. The enzyme was very stable over the wide ragnes of the temperature ; even with one hour heat treatment at 7$0^{\circ}C$, the enzyme showed substantial amount of the activity toward casein. In addition, the enzyme was stable over the wide range of pH. Molecular weight of the protease was determined to be 17.4 kD by SDS-PAGE.

  • PDF

Purification and Characteristics of Chitosanase from Bacillus sp. HW-002

  • Lee , Hyean-Woo;Choi, Jong-Whan;Han, Dong-Pyou;Park, Myoung-Jin;Lee, No-Woon;Yi, Dong-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 1996
  • Chitosanase from Bacillus sp. HW-002 was purified with CM-cellulose column chromatography, and HPLC with DEAE- TSK gel and YMC-pack Diol 120. The purified enzyme appeared as a single band on SDS-polyacrylamide gel. The molecular weight of the enzyme was estimated to be about 46 kDa on SDS-polyacrylamide gel, and was estimated to be about 23 kDa by GFC. The optimal pH of chitosanolytic activity was about pH 5.5-6.0, and the purified enzyme was most stable at pH 5.0. The optimal temperature of chitosanolytic activity was $65^{\circ}C$ and the enzyme was stable at $45^{\circ}C$ for 1 h. Chitosan was the most favorable substrate among various $\beta$-glucan. UVmax of the purified enzyme was 195 nmand was not noted around 280 nm. The main product of enzyme reaction with chitosan was chitobiose.

  • PDF

Characterization of Proteus vulgaris K80 Lipase Immobilized on Amine-Terminated Magnetic Microparticles

  • Natalia, Agnes;Kristiani, Lidya;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1382-1388
    • /
    • 2014
  • Proteus vulgaris K80 lipase was expressed in Escherichia coli BL21 (DE3) cells and immobilized on amine-terminated magnetic microparticles (Mag-MPs). The immobilization yield and activity retention were 84.15% and 7.87%, respectively. A homology model of lipase K80 was constructed using P. mirabilis lipase as the template. Many lysine residues were located on the protein surface, remote from active sites. The biochemical characteristics of immobilized lipase K80 were compared with the soluble free form of lipase K80. The optimum temperature of K80-Mag-MPs was $60^{\circ}C$, which was $20^{\circ}C$ higher than that of the soluble form. K80-Mag-MPs also tended to be more stable than the soluble form at elevated temperatures and a broad range of pH. K80-Mag-MP maintained its stable form at up to $40^{\circ}C$ and in a pH range of 5.0-10.0, whereas soluble K80 maintained its activity up to $35^{\circ}C$ and pH 6.0-10.0. K80-Mag-MPs had broader substrate specificity compared with that of soluble K80. K80-Mag-MPs showed about 80% residual relative activity after five recovery trials. These results indicate the potential benefit of K80-Mag-MPs as a biocatalyst in various industries.

Characteristic Features of an ${\alpha}-Galactosidase$ from Penicillium purpurogenum

  • Park, Gwi-Gun;Lee, Sang-Young;Park, Boo-Kil;Ham, Seung-Shi;Lee, Jin-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.90-95
    • /
    • 1991
  • A ${\alpha}-galactosidase{\;}({\alpha}-D-galactoside$ galactohydrolase; EC 3.2.1.22) was purified from the culture filtrate of Penicillium purpurogenum by DEAE-cellulose column chromatography, gel filtration of Bio gel p-l00, and subsequent SP-Sephadex C-25 chromatography. The final preparation thus obtained showed a single band on polyacrylamide disc-gel and SDS-polyacrylamide gel electrophoresis. The molecular weight and isoelectric point were determined to be 63,000 and pH 4.0 by SDS-polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The galactosidase exhibited maximum activity at pH 4.5 and $55^{\circ}C$, and was stable between pH 2 and 5, and also stable up to $40^{\circ}C$. The enzyme activity was not affected considerably by treatment with other metal compounds except mercuric chloride and silver nitrate. Copra galactomannan was finally hydrolyzed to galactose, mannose and mannobiose through the sequential actions of the purified galactosidase and mannanase from the same strain. The enzyme hydrolyzed melibiose and raffinose, but not lactose.

  • PDF

Molecular Cloning of a CMCase Gene from Alkalophilic sp. and Its Expression in Escherichia coli

  • Yu, Ju-Hyun;Kong, In-Soo;Kim, Jin-Man;Park, Yoon-Suk
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.529.1-529
    • /
    • 1986
  • For isolation of the CMCase gene of the alkalophilic Bacillus sp. strain N-4 to analyze their genetic information for the multicomponents of the cellulase, Bscherichia coli K12 and plasmid DNA pBR322 was used as host-vector system. After the digestion of purified chromosomal DNA and plasmid DNA pBR322 with HindIII, these were ligated. The ligated DND were transformed into Escherichia coli, and recombinant plasmid 107 carried the gene coding for CMCase was constructed. The CMCase produced by Escherichia coli cells containing plasmid DNA pYBC107 was found in the cells as intracellular enzyme and nearly 60% of the total CMCase activity was localized in cellular fraction. Also, the optimum pH for the reaction of CMCase produced by Escherichia coli was appeared at pH .8.0 and the enzyme was stable between pH 7.0 and pH 8.0.

  • PDF