• Title/Summary/Keyword: pH of silage

Search Result 400, Processing Time 0.029 seconds

Effect of Feeding Whole Crop Barley Silage- or Whole Crop Rye Silage based-TMR and Duration of TMR Feeding on Growth, Feed Cost and Meat Characteristics of Hanwoo Steers (청보리 사일리지 TMR 또는 청호밀 사일리지 TME 급여 및 급여기간이 거세 한우의 증체, 사료비 및 육질특성에 미치는 효과)

  • Jin, Guang Lin;Kim, Jong-Kyu;Qin, Wei-Ze;Jeong, Jun;Jang, Sun-Sik;Sohn, Yong-Suk;Choi, Chang-Won;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.54 no.2
    • /
    • pp.111-124
    • /
    • 2012
  • Feeding trial was conducted with 80 Hanwoo steers (7.5 months of age, 204.4 kg body weight) for 680 days from growing period to late fattening period to examine the feeding value of whole crop barley silage TMR (BS-TMR) and whole crop rye silage TMR (RS-TMR) on body gain, feed cost, slaughter characteristics and quality characteristics of $longissimus$ $dorsi$ muscle. Dietary treatments were conventional separate feeding of concentrate and rice straw (control), feeding BS TMR up to middle fattening period and same diet as for control during late fattening period (BS-TMR I), feeding BS-TMR for whole experimental period (BS-TMR II), feeding RS TMR up to middle fattening period and same diet as for control during late fattening period (RS-TMR I) and RS TMR for whole experimental period (RS-TMR II). Sixteen castrated calves were assigned to each treatment (4 pens, 4 heads per pen). Pens in each treatment were randomly distributed. Feeding both BS silage TMR and RS silage TMR slightly increased body gain of Hanwoo steers at the stages of growing and early fattening, and increased (P<0.0001) at middle fattening compared to feeding control diet while control diet tended to increase body gain at late fattening stage compared to feeding BS-TMR I, BS-TMR II and RS-TMR I diets. Total body gain was slightly increased in Hanwoo steers fed both I and II for BS and RS TMR compared to that in control diet. Feed cost per kg gain per head was relatively low in the Hanwoo steers fed silage TMRs to that fed control diet. Carcass weight, back fat thickness and $longissimus$ $dorsi$ area of Hanwoo steers tended to increase but lowered (P<0.047) yield index by feeding silage TMRs. Feeding BS TMR slightly decreased marbling score but no difference was found in the number of head over grade 1 between diets. Control diet tended to improve yield grade compared to silage TMRs. Chemical composition, water holding capacity, drip loss, cooking loss and pH, color and fatty acid composition of $longissimus$ $dorsi$ were not affected by experimental diets and feeding duration of silage TMRs. Shear force, however, was increased (P<0.046) by silage TMRs without difference between them compared to control diet. Based on the results of the current study, BS TMR and RS TMR could improve body gain and reduce feed cost without deteriorating meat quality compared to separate feeding of concentrate and rice straw. Overall feeding value was similar between BS TMR and RS TMR.

Studies on Improvement of Quality of Round Bale Sliage Using Fresh Rice Straw (라운드 베일을 이용한 생볏짚 사일리지의 품질 향상에 관한 연구)

  • Kang, Woo Sung;Kim, Jong Geun;Chung, Eui Soo;Ham, Jun Sang;Kim, Jong Duk;Kim, Kyeong Nam
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.19 no.1
    • /
    • pp.41-48
    • /
    • 1999
  • This experiment was carried out to determine the effect of the silage additives on improvement of quality of fresh rice straw silage using round bale at the forage experimental field, grassland and forage crops division, National Livestock Research Institute, RDA, Suwon from 1997 to 1998. The experiment was arranged in a randomized block design with three replication. The treatments used in this study were consisted of different additives(control, formic acid, molasses, molasses+urea and inoculant). The rice straw silage with molasses+urea treatment resulted in high crude protein content and in vitro dry matter digestibility were increased with molasses of inoculant treatments compare with the control. The mean dry matter of formic acid treatment material was higher than with control but there was no significant difference in dry matter content among the additives treatments. The pH of molasses treatments significantly increased the proportion of lactic acid(P<0.05) and decreased the proportion of butyric acid. The total organic acid content of all treatments had low around 2%. Ammonia-N of molasses+urea treatment was significantly(P<0.05) higher than that of others, but formic acid or inoculant treatments was lower below 10% per total nitrogen. Over a 7d feeding period, the dry matter intake per cattle on the inoculant treatment was higher that on both the untreated round bale silage of fresh rice straw and rice straw hay. Producing cost per kilogram of round bale silage of fresh rice straw was decreased according to the increasement of harvesting area. It is suggested that application of round bale silage system to fresh rice straw with molasses or inoculant was the best treatment for improving preservation as silage, and that animal intake was enhanced by addition of inoculant to fresh rice straw.

  • PDF

Effects of Feeding Whole Crop Rice Silage Harvested at Different Mature Stages on Rumen Fermentation and Blood Metabolites in Hanwoo Steers (수확시기별 총체벼 사일리지 급여가 거세한우 반추위 발효성상 및 혈액생리대사에 미치는 영향)

  • Choi, Chang-Weon;Oh, Young-Kyoon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.31 no.2
    • /
    • pp.191-200
    • /
    • 2011
  • Four ruminally cannulated Hanwoo steers (BW 600 ${\pm}$ 48.4 kg) fed whole crop rice silage (WRS) as forage were used to investigate the effects of its dietary on rumen fermentation and blood metabolites at different harvesting time such as milk, dough, yellow ripe and mature stages of WRS, respectively. Mean ruminal pH sampled at 0, 1, 2, 4, 6 and 8 h after the morning feeding was not significantly (p>0.05) different between the WRS by the harvesting time. In diurnal pattern in ruminal pH, the lowest pH for the mature stage treatment (Mature) appeared at 6 h after the feeding while it appeared at 2-4 h for the other treatments. This may indicate that retention time in the rumen of Hanwoo fed WRS harvested at the Mature increased. Although feeding WRS harvested at different stages did not significantly (p>0.05) affect ruminal ammonia N concentration, the ammonia N for WRS harvested at the milk stage (Milk) tended (p=0.11) to decrease compared with that for the yellow stage treatment (Yellow). In the blood metabolites analysis, BUN concentration for Yellow numerically decreased compared with that for Milk. This, taking lower concentration of ruminal ammonia N for Milk than the other treatments into account, clearly indicates that the BUN concentrations may not increase in proportion to ruminal ammonia N concentration according to ammonia N concentration entering into the lower gastric tracts. Lower (p=0.03) concentration of blood albumin for the dough stage treatment than that for Mature may indicate high protein synthesis in Hanwoo fed WRS at the dough stage, but further studies in terms of mechanism of nutrients distribution should be required. Present results indicate that different harvesting time did not affect rumen fermentation and blood metabolites in Hanwoo. Thus, based on the results of the present and the previous studies, utilizing WRS harvested at yellow stage could be recommendable for Hanwoo steers.

Effect of Harvest Stage, Wilting and Crushed Rice on the Forage Production and Silage Quality of Organic Whole Crop Barely (수확시기, 예건 및 싸라기 처리가 유기 청보리의 사초 생산성 및 사일리지 품질에 미치는 영향)

  • Kim, Jong-Duk;Lee, Hyun-Jin;Jeon, Kyeong-Hup;Yang, Ga-Young;Kwon, Chan-Ho;Sung, Ha-Guyn;HwangBo, Soon;Jo, Ik-Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.30 no.1
    • /
    • pp.25-34
    • /
    • 2010
  • Although whole crop barley (Hordeum vulgare L.) is now widely grown as a silage crop in Korea, forage production and silage quality of that for organic farm have not been published. Therefore, this experiment was conducted to evaluate the effect of harvest stage on forage production and quality of organic barley, and effect of field wilting and crushed rice for shortening of harvest date and improvement of forage quality. The experiment was split-plot design with three replications. Main plots were heading, milking and yellow stages, and sub-plot were field wilting for I day, crushed rice 10% (CR10%) and 15% (CR15%) treatments. The dry matter (DM) contents of heading, milking and yellow stages were 12.8%, 21.9% and 29.8%, respectively. The DM yields of heading, milking and yellow stages were 10,346, 15,819 and 18,336 kg/ha, respectively, and the total digestible nutrients (TDN) of these were 6,288, 9,550 and 10,178 kg/ha, respectively. The pH of milking stage showed low 4.00 pH values. The crude protein, ether extract, crude ash, non-fiber carbohydrate (NFC) and TDN contents were decreased as harvest stage progressed, while neutral detergent fiber (NDF) and acid detergent fiber (ADF) were increased. The crude ash (CA) of milking stage showed the lowest among harvest stages. Field wilting and crushed rice treatments decreased CA, NDF and ADF contents, and increased NFC and TDN contents. In vitro dry matter digestibility (IVDMD) decreased with progressed harvest stage, while field wilting and crushed rice treatments increased that of barley silage. Lactic acid and total organic acid contents of milking stage were the highest, and butyric acid of milking stage was the lowest among harvest stage. The good effect of field wilting and crushed rice was observed in heading stage. The experiment results indicate that optimum harvest stage of barley silage for organic was milking stage. The field wilting and crushed rice additive could be recommended as effective method for shortening harvest date and increasing forage quality of organic barley silage

Effect of sugar content on fermentation characteristics and in vitro digestibility of whole crop wheat silage

  • Song, Tae Hwa;Oh, Young Jin;Park, Jong Ho;Kang, Chon Sik;Cheong, Young Keun;Son, Jea Han;Park, Jong Chul;Kim, Yang Kil;Kim, Kyong Ho;Kim, Bo Kyeong;Park, Tae Il
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.282-282
    • /
    • 2017
  • The many factors such as sugar content, moisture, type of bacteria which predominate, buffering capacity, packing and sealing are known to be associated with silage fermentation quality. Among the sugar content are particularly important, because effective silage ensiling relies on the fermentation of sugar content to lactic acid by lactic acid bacteria. Sugar content is also known to affect the protein utilization of rumen. This study was conducted to observe the effect of water soluble carbohydrates on fermentation characteristics and in vitro digestibility of whole crop wheat silage. This experiment was used standard cultivars (Cheongwoo, Hordeum balgare L) and solid breeding line of whole crop wheat. The materials harvested at the 30 after heading day and chopped for making silage, and using this silage carried out in vitro digestibility for 6, 12, 24 and 48 hours. For the feed value, crude protein, NDF, ADF contents showed slightly higher than the before ensiling and TDN contents were slightly lower compared to the before ensiling, but did not show the significantly different. For the sugar contents, fructose and glucose contents were decreased in the after ensiling compared to the before ensiling, there were more reduced at the containing high sugar content wheat. The pH value was lower at containing high sugar content wheat. lactic acid content was significantly higher at the containing high sugar content wheat. Therefore, there was profitable to the production of high quality wheat silage at the higher the sugar content. In in vitro digestibility test, containing high sugar content HW34line showed significantly higher dry matter digestibility at 6 and 12 hours of incubation and amount of NH3-N lower other line in all incubation time. Therefore, there was profitable to the production of high quality wheat silage at the higher the sugar content.

  • PDF

Studies of Organic Forage Production System for Animal Production in Korea (한국의 가축 생산성 향상을 위한 유기조사료 생산체계에 관한 연구)

  • Kim, Jong-Duk;Kim, Jong-Kwan;Kwon, Chan-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.155-166
    • /
    • 2014
  • Organic forage production system is one of the most important aspects in organic livestock production. Animals in the organic farming system are also essential for manure to be used for organic forage production. Both organic forage and animals are essential to maintain the cycle of organic agriculture system. In this paper we introduce the organic forage production system in Korea. Summer and winter crops are getting popular in Korea because of their high forage yield and cultivation in double cropping systems. Common cropping system for forage production in Korea is the double cropping system with legume and grass mixture. Forage sorghum and sudangrass are the most popular ones of annual summer forage corps because of their high production with low cost in the double cropping systems. In the mixture of forage crops, inter cropping is more suitable in the corn and sorghum cropping system because of high lodging resistance and forage yield, and low weed population. Forage sorghum and sudangrass are difficult to preserve as direct-cut silage due to the fact that its high moisture content causes excessive fermentation during ensiling. Corn grain addition to sorghum silage could be recommended as the most effective treatment for increasing quality and reducing production cost. It is recommended that corn grain could be added up to 10% of total amount of silage. And agriculture by-products also can be added at the time of ensiling to minimize losses of effluent and have the additional advantage of increasing quality. Agriculture by-products as silage supplements increased DM content and quality, and decreased the production cost of sorghum silage. Field pre-wilting treatment of forage crops also increased DM content and quality of the silage. Wilting sorghum${\times}$sudangrass hybrid before ensiling was the effective method for reducing effluent and increasing pH and forage quality more than direct cut silage. Optimum prewilting period of sudangrass silage was 1 or 2 days. In organic forage, the most important factor is the enhancement of organic forage sufficiency in relation to the environmental-friendly and organic livestock. Consequently, there are many possibilities for animal production and organic forage production in Korea. No forages no cattle concept should be emphasized in organic farming system.

Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages

  • Ning, Tingting;Wang, Huili;Zheng, Mingli;Niu, Dongze;Zuo, Sasa;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • Objective: This study investigated the association of enzyme-producing microbes and their enzymes with starch and hemicellulose degradation during fermentation of total mixed ration (TMR) silage. Methods: The TMRs were prepared with soybean curd residue, alfalfa hay (ATMR) or Leymus chinensis hay (LTMR), corn meal, soybean meal, vitamin-mineral supplements, and salt at a ratio of 25:40:30:4:0.5:0.5 on a dry matter basis. Laboratory-scale bag silos were randomly opened after 1, 3, 7, 14, 28, and 56 days of ensiling and subjected to analyses of fermentation quality, carbohydrates loss, microbial amylase and hemicellulase activities, succession of dominant amylolytic or hemicellulolytic microbes, and their microbial and enzymatic properties. Results: Both ATMR and LTMR silages were well preserved, with low pH and high lactic acid concentrations. In addition to the substantial loss of water soluble carbohydrates, loss of starch and hemicellulose was also observed in both TMR silages with prolonged ensiling. The microbial amylase activity remained detectable throughout the ensiling in both TMR silages, whereas the microbial hemicellulase activity progressively decreased until it was inactive at day 14 post-ensiling in both TMR silages. During the early stage of fermentation, the main amylase-producing microbes were Bacillus amyloliquefaciens (B. amyloliquefaciens), B. cereus, B. licheniformis, and B. subtilis in ATMR silage and B. flexus, B. licheniformis, and Paenibacillus xylanexedens (P. xylanexedens) in LTMR silage, whereas Enterococcus faecium was closely associated with starch hydrolysis at the later stage of fermentation in both TMR silages. B. amyloliquefaciens, B. licheniformis, and B. subtilis and B. licheniformis, B. pumilus, and P. xylanexedens were the main source of microbial hemicellulase during the early stage of fermentation in ATMR and LTMR silages, respectively. Conclusion: The microbial amylase contributes to starch hydrolysis during the ensiling process in both TMR silages, whereas the microbial hemicellulase participates in the hemicellulose degradation only at the early stage of ensiling.

Fermentation characteristics and microbial community composition of wet brewer's grains and corn stover mixed silage prepared with cellulase and lactic acid bacteria supplementation

  • Guoqiang Zhao;Hao Wu;Yangyuan Li;Li Li;Jiajun He;Xinjian Yang;Xiangxue Xie
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.84-94
    • /
    • 2024
  • Objective: The objective of this study was to investigate how cellulase or/and lactic acid bacteria (LAB) affected the fermentation characteristic and microbial community in wet brewer's grains (WBG) and corn stover (CS) mixed silage. Methods: The WBG was mixed thoroughly with the CS at 7:3 (w/w). Four treatment groups were studied: i) CON, no additives; ii) CEL, added cellulase (120 U/g fresh matter [FM]), iii) LAB, added LAB (2×106 cfu/g FM), and iv) CLA, added cellulase (120 U/g FM) and LAB (2×106 cfu/g FM). Results: All additive-treated groups showed higher fermentation quality over the 30 d ensiling period. As these groups exhibited higher (p<0.05) LAB counts and lactic acid (LA) content, along with lower pH value and ammonia-nitrogen (NH3-N) content than the control. Specifically, cellulase-treated groups (CEL and CLA) showed lower (p<0.05) neutral detergent fiber and acid detergent fiber contents than other groups. All additives increased the abundance of beneficial bacteria (Firmicutes, Lactiplantibacillus, and Limosilactobacillus) while they decreased abundance of Proteobacteria and microbial diversity as well. Conclusion: The combined application of cellulase and LAB could effectively improve the fermentation quality and microbial community of the WBG and CS mixed silage.

Effect of Ensiling Sudax Fodder with Broiler Litter and Candida Yeast on the Changes in pH, Lactic Acid and Nitrogen Fractions

  • Rasool, S.;Gilani, A.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • Sudax fodder (Sorghum sudanense ${\times}$ Sorhum vulgare) was ensiled in laboratory silos with or without 20, 30, or 40 percent broiler litter and 6 percent molasses with or without Candida yeast. The samples were analyzed for pH, lactic acid and nitrogen fractions at the start of the experiment and at 5 days interval, thereafter till 40 days. A sharp decline in pH and increase in lactic acid content was observed on fifth day of ensiling. Thereafter, the rate of pH decline decreased till 20 days and that of lactic acid increase till 25 days and the remained constant. Increasing levels of broiler litter had adverse effect on pH drop and lactic acid increase of silages. Total-N content of the silages had little variation throughout the ensiling period. A sharp decline in protein-N and increase in ammonia-N content was observed on day 5 of ensiling. Thereafter, the content of protein-N increased till 20 days and that of ammonia-N decreased till 15 days, but these changes were very small compared to that occurred during the first 5 days of ensiling. The level of broiler litter had inverse relationship with protein degradation and direct relationship with ammonia production. The yeast inoculum failed to produce any significant effect.

Effects of Cellulase and Brewers' Grains Addition on the Fermentation Quality and Nutritive Value of Barley Straw Silage

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.575-580
    • /
    • 1997
  • Two experiments were carried out to evaluate the effects of cellulase and brewers' grains addition on improvement of the fermentation quality and the nutritive value of barley straw silages made from dried or fresh straw. In Exp. I : 1 kg dried barley straw + 2 kg wet brewers' grains + 0 (I-0), 2 (I-2), 4 (I-4), 6 (I-6), and 8 (I-8) g of cellulase. In Exp. II : 2 kg fresh barley straw + 2 kg wet brewers' grains + 0 (II-0), 2 (II-2), 4 (II-4), 6 (II-6), and 8 (II-8) g of cellulase. Each prepared material was ensiled into vinyl bag silos (5 L capacity) and stored for 10 (Exp. I) or 7 (Exp. II) months at $21^{\circ}C$. The fermentation quality and nutritive value of barley straw silages produced were markedly improved by mixing them with wet brewers' grains, on the other hand the effect of cellulase addition on the fermentation and reduction of the cell wall components in the silos at ensiling more effectively occurred at low dry matter silages rather than at the high ones. All silages in both Exp. I and II were found well preserved as indicated by their low pH and high lactic acid concentration. Cellulase treated silages had a lower pH (p<0.05) and a higher lactic acid concentration (p<0.05) than those of without cellulase addition. NDF, ADF, and (Hemi)cellulose contents of cellulase treated silages reduced (p<0.05) compare to those of the corresponding silage without cellulase. Increasing levels of cellulase addition caused an increase in fermentation quality and reduction of cell wall components. In vitro dry mater digestibility was found similar in all silages. Fermentation quality and nutritive value of barley straw silages were improved by both wet brewers' grains and cellulase addition. Cellulase addition reduced the cell wall components silages, but did not improve the digestibility.