• Title/Summary/Keyword: p38kinase

Search Result 640, Processing Time 0.03 seconds

Anti-Melanogenic Effect of Dendropanax Morbiferus and Its Active Components via Protein Kinas e A/Cyclic Adenos ine Monophosphate-Responsive Binding Protein-and p38 Mitogen-Activated Protein Kinase-Mediated Microphthalmia-Associated Transcription Factor Downregulation

  • Bohyun Yun;Ji Soo Kim;Jung Up Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.104-104
    • /
    • 2022
  • Dendropanax morbiferus H. Lev has been reported to have some pharmacologic activities and also interested in functional cosmetics. We found that the water extract of D. morbiferus leaves significantly inhibited tyrosinase activity and melanin formation in α-melanocyte stimulating hormone (MSH)-induced B16-F10 cells. D. morbiferus reduced melanogenesis-related protein levels, such as microphthalmia? associated transcription factor (MITF), TRP-1, and TRP-2, without any cytotoxicity. Two active ingredients of D. morbiferus, (10E)-9,16-dihydroxyoctadeca-10,17-dien-12,14-diynoate (DMW-1) and (10E)-(?)-10,17-octadecadiene-12,14-diyne-1,9,16-triol (DMW-2) were identified by testing the anti-melanogenic effects and then by liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. DMW-1 and DMW-2 significantly inhibited melanogenesis by the suppression of protein kinase A (PKA)/cyclic AMP (cAMP)-responsive binding protein (CREB) and p38 MAPK phosphorylation. DMW-1 showed a better inhibitory effect than DMW-2 in α-MSH-induced B16-F10 cells. D. morbiferus and its active component DMW-1 inhibited melanogenesis through the downregulation of cAMP, p-PKA/CREB, p-p38, MITF, TRP-1, TRP-2, and tyrosinase. These results indicate that D. morbiferus and DMW-1 may be useful ingredients for cosmetics and therapeutic agents for skin hyperpigmentation disorders.

  • PDF

The effect of different dietary on expression of AMPK and MAPK in rat muscle after a bout endurance exercise (서로 다른 식이 섭취와 일회 지구성 운동 후 쥐 골격근 내 AMPK와 MAPK 발현)

  • Eo, su-ju;Kim, hyo-sik;Lee, mi-sook;Kim, jong-kyu;Lee, jong-sam
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2012.05a
    • /
    • pp.407-408
    • /
    • 2012
  • 요약은 이 연구는 다양한 식이 섭취와 일회 지구성 운동으로 야기되는 근육(백색 비복근) 내 AMP-activated protein kinase(AMPK), Extracellular signal-regulated kinase(ERK 1/2)와 p38 mitogen-activated protein kinase(MAPK)의 신호전달체계를 구명해 보고자 실시되었다. 실험에 사용된 쥐(Sprague-Dawley)는 총 160마리로 크게 일반 탄수화물 식이(CHO; 40마리), 포화지방 식이(SAFA; 40마리), 단일불포화 식이(MUFA; 40마리)와 다불포화 식이(PUFA; 40마리)로 나누어 연구를 진행하였다. 운동 프로그램은 일회 지구성 운동으로 30분 운동 후 5분 휴식의 사이클을 지속적으로 6번 반복하여 총 3시간의 지구성 수영 운동을 실시하였고, 분석을 위한 조직 샘플링은 운동 전, 운동 후 0시간, 1시간, 4시간, 24시간에 걸쳐서 이루어졌다. 연구의 결과는 서로 다른 식이 섭취와 운동에 따른 AMPK의 신호전달 단백질의 발현은 유의한 치이가 나타나지 않았다. 그러나 서로 다른 식이를 섭취한 쥐의 근육에서 ERK 1/2(p<.01)와 p38 MAPK(p<.001)의 신호전달 단백질의 발현은 유의한 차이를 보였다(p<.05). 흥미로운 결과는 운동에 대한 유의한 차이는 AMPK, ERK1/2와 p38 MAPK 모두 유의한 차이를 보이지 않았다는 것이다. 결론적으로 일회 지구성 운동보다 서로 다른 식이의 섭취가 근육 내(백색 비복근)의 대사적 변화를 일으키는데 주도적인 영향을 미칠 수 있음을 시사할 수 있다.

  • PDF

Fortified Antioxidative Potential by Chrysoeriol through the Regulation of the Nrf2/MAPK-mediated HO-1 Signaling Pathway in RAW 264.7 Cells (생쥐 대식세포에서 HO-1 발현 유도를 통한 chrysoeriol의 항산화 효과)

  • Park, Chung Mu
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • Chrysoeriol is a widespread flavone, and it is usually found in alfalfa, which has been used as a traditional medicine to treat dyspepsia, asthma, and urinary system disorders. Recently, analysis has been conducted on the anti-inflammatory activity of chrysoeriol, but information on its antioxidative capacity is limited. In this study, the antioxidative potential of chrysoeriol against oxidative damage and its molecular mechanisms were evaluated by analysis of the cell viability, reactive oxygen species (ROS) formation, and Western blots in the RAW 264.7 cell line. Chrysoeriol significantly scavenged lipopolysaccharide (LPS)-induced intracellular ROS formation in a dose-dependent manner, without any cytotoxicity. Heme oxygenase-1 (HO-1), a phase II enzyme that exerts antioxidative activity, was also potently induced by chrysoeriol treatment, which corresponded to the translocation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) into the nucleus. Moreover, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) were analyzed due to their important role in maintaining cellular redox homeostasis against oxidative stress. As a result, chrysoeriol-induced HO-1 upregulation was mediated by extracellular signal - regulated kinase (ERK), c-Jun $NH_2$-terminal kinase (JNK), and p38 phosphorylation. To identify the antioxidative potential exerted by HO-1, tert-butyl hydroperoxide (t-BHP)-induced oxidative damage was applied and mitigated by chrysoeriol treatment, which was confirmed by the HO-1 selective inhibitor and inducer, respectively. Consequently, chrysoeriol strongly strengthened the HO-1-mediated antioxidative potential through the regulation of the Nrf2/MAPK signaling pathways.

L-ascorbic acid induces apoptosis in human laryngeal epidermoid Hep-2 cells by modulating the nuclear factor kappa-light-chain-enhancer of activated B cells/mitogen-activated protein kinase/Akt signaling pathway

  • Park, Jung-Sun;Kim, Yoon-Jung;Park, Sam Young;Chung, Kyung-Yi;Oh, Sang-Jin;Kim, Won-Jae;Jung, Ji-Yeon
    • International Journal of Oral Biology
    • /
    • v.45 no.4
    • /
    • pp.169-178
    • /
    • 2020
  • L-ascorbic acid (L-AA; vitamin C) induces apoptosis in cancer cells. This study aimed to elucidate the molecular mechanisms of L-AA-induced apoptosis in human laryngeal epidermoid carcinoma Hep-2 cells. L-AA suppressed the viability of Hep-2 cells and induced apoptosis, as shown by the cleavage and condensation of nuclear chromatin and increased number of Annexin V-positive cells. L-AA decreased Bcl-2 protein expression but upregulated Bax protein levels. In addition, cytochrome c release from the mitochondria into the cytosol and activation of caspase-9, -8, and -3 were enhanced by L-AA treatment. Furthermore, apoptosis-inducing factor (AIF) and endonuclease G (EndoG) were translocated into the nucleus during apoptosis of L-AA-treated Hep-2 cells. L-AA effectively inhibited the constitutive nuclear factor-κB (NF-κB) activation and attenuated the nuclear expression of the p65 subunit of NF-κB. Interestingly, L-AA treatment of Hep-2 cells markedly activated Akt and mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase [JNK]) and and LY294002 (Akt inhibitor), SB203580 (p38 inhibitor) or SP600125 (a JNK inhibitor) decreased the levels of Annexin V-positive cells. These results suggested that L-AA induces the apoptosis of Hep-2 cells via the nuclear translocation of AIF and EndoG by modulating the Bcl-2 family and MAPK/Akt signaling pathways.

Anti-inflammatory effect of lycopene in SW480 human colorectal cancer cells

  • Cha, Jae Hoon;Kim, Woo Kyoung;Ha, Ae Wha;Kim, Myung Hwan;Chang, Moon Jeong
    • Nutrition Research and Practice
    • /
    • v.11 no.2
    • /
    • pp.90-96
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Although the antioxidative effects of lycopene are generally known, the molecular mechanisms underlying the anti-inflammatory properties of lycopene are not fully elucidated. This study aimed to examine the role and mechanism of lycopene as an inhibitor of inflammation. METHODS/MATERIALS: Lipopolysaccharide (LPS)-stimulated SW 480 human colorectal cancer cells were treated with 0, 10, 20, and $30{\mu}M$ lycopene. The MTT assay was performed to determine the effects of lycopene on cell proliferation. Western blotting was performed to observe the expression of inflammation-related proteins, including nuclear factor-kappa B ($NF-{\kappa}B$), inhibitor kappa B ($I{\kappa}B$), mitogen-activated protein kinase (MAPK), extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK), and p38 (p38 MAP kinase). Real-time polymerase chain reaction was performed to investigate the mRNA expression of tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1 beta ($IL-1{\beta}$), interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2). Concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were determined via enzyme-linked immunosorbent assays. RESULTS: In cells treated with lycopene and LPS, the mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, iNOS, and COX-2 were decreased significantly in a dose-dependent manner (P < 0.05). The concentrations of $PGE_2$ and NO decreased according to the lycopene concentration (P < 0.05). The protein expressions of $NF-{\kappa}B$ and JNK were decreased significantly according to lycopene concertation (P < 0.05). CONCLUSIONS: Lycopene restrains $NF-{\kappa}B$ and JNK activation, which causes inflammation, and suppresses the expression of $TNF-{\alpha}$, $IL-1{\beta}$, IL-6, COX-2, and iNOS in SW480 human colorectal cancer cells.

Endogenous Gene Expression of p53 and Regulatory Subunits of Cyclic AMP-dependent Protein Kinase in Ovarian Cancer Cells (난소암 세포주에서 p53과 Cyclic AMP-dependent Protein Kinase의 Regulatory Subunit 유전자들의 발현에 관한 연구)

  • Jin Seo;Park, Woonmee;Hwang, Eun-Seong;Lee, Je-Ho;Hong, Seung-Hwan
    • The Korean Journal of Zoology
    • /
    • v.38 no.2
    • /
    • pp.204-211
    • /
    • 1995
  • In an effort to develop a new therapeutic strategy for human gene therapy of solid ovarian tumor, we studied the expression of the p53 tumor suppressor Sene as well as regulatory subunits of cyclic AMP (cAMP)-dependent protein kinase in human ovarian carcinoma cells. Four cell lines (2774, Caov-3, SK-OV-3 and OVCAR-3) were selected for the analyses. The p53 transcript and protein were detected only in the 2774 cell line by Northern and Western Bnalysis. In the relatively fast growing cell line, SK-OV-3, the %rope 1 a regulstorv subunit (RIA of CAMP-dependent protein kinase was the highest among the four cell lines. The expression level of $RII\beta$ protein was low in the four cell lines examined. These results maw point to a direction to select the target gene(sl to be employed for gene therapy to control the ovarian cancer.

  • PDF

The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells (봉약침액(蜂藥鍼液_이 RAW 264.7 세포의 COX-2, P38, ERK 및 JNK에 미치는 영향(影響))

  • Sim, Jae-Young;Jo, Hyun-Chol;Lee, Seong-No;Kim, Kee-Hyun
    • Journal of Pharmacopuncture
    • /
    • v.6 no.2
    • /
    • pp.77-90
    • /
    • 2003
  • The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS), sodium nitroprusside(SNP), hydrogen peroxide($H_2O_2$)-induced expressions of cyclooxygenase-2(COX-2), p38, jun N-terminal Kinase(JNK) and extra-signal response kinase(ERK) in RAW 264.7 cells, a murine macrophage cell line. Method : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies. Results : 1. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited insignificantly $H_2O_2$-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly LPS, SNP and $H_2O_2$-induced expression of p38 compared with control, respectively. 3. The 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and $H_2O_2$-induced expression of JNK compared with control, respectively. 4. The $5\;{\mu}g/ml$ of bee venom inhibited significantly SNP-induced expression of ERK, the $0.5\;{\mu}g/ml$ of bee venom increased significantly $H_2O_2$-induced expression of ERK compared with control. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.

Mitogen-Activated Protein Kinase Signal Transduction in Solid Tumors

  • Lei, Yuan-Yuan;Wang, Wei-Jia;Mei, Jin-Hong;Wang, Chun-Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8539-8548
    • /
    • 2014
  • Mitogen-activated protein kinase (MAPK) is an important signaling pathway in living beings in response to extracellular stimuli. There are 5 main subgroups manipulating by a set of sequential actions: ERK(ERK1/ERK2), c-Jun N(JNK/SAPK), p38 MAPK($p38{\alpha}$, $p38{\beta}$, $p38{\gamma}$ and $p38{\delta}$), and ERK3/ERK4/ERK5. When stimulated, factors of upstream or downstream change, and by interacting with each other, these groups have long been recognized to be related to multiple biologic processes such as cell proliferation, differentiation, death, migration, invasion and inflammation. However, once abnormally activated, cancer may occur. Several components of the MAPK network have already been proposed as targets in cancer therapy, such as p38, JNK, ERK, MEK, RAF, RAS, and DUSP1. Among them, alteration of the RAS-RAF-MEK-ERK-MAPK(RAS-MAPK) pathway has frequently been reported in human cancer as a result of abnormal activation of receptor tyrosine kinases or gain-of-function mutations in genes. The reported roles of MAPK signaling in apoptotic cell death are controversial, so that further in-depth investigations are needed to address these controversies. Based on an extensive analysis of published data, the goal of this review is to provide an overview on recent studies about the mechanism of MAP kinases, and how it generates certain tumors, as well as related treatments.

Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells

  • Kim, Shi-Yeon;Min, Kyoung-Jin;Joe, Eun-Hye;Min, Do-Sik
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2004.10a
    • /
    • pp.74-79
    • /
    • 2004
  • Little is known about the effect of epigallocatechin-3 gallate (ESCG), a major constituent of green tea, on the expression of cyclooxygenase (COX)-2. Here, we studied the role of phospholipase D (PLD) isozymes in EGCG-induced COX-2 expression. Stimulation of human astrocytoma cells (U87) with EGCG induced formation of phosphatidylbutanol, a specific product of PLD activity, and synthesis of COX-2protein and its product, prostaglandin $E_2$ ($PGE_2$). Pretreatment of cells with 1-butanol, but not 3-butanol, suppressed EGCG-induced COX-2 expression and $PGE_2$ synthesis. Furthermore, evidence that PLD was involved in EGCG-induced COX-2 expression w3s provided by the observations that COX-2 expression was stimulated by over-expression of PLD1 or PLD2 isozymes and treatment with phosphatidic acid(PA), and that prevention of PA dephosphorylation by 1-propranolol significantly potentiated COX-2expression Induced by EGCG. EGCG induced activation of p38 mitogen-activated protein kinase (p38MAPK), and specific Inhibition of p38 MAPK dramatically abolished EGCG-Induced PLD activation, COX-2 expression, and $PGE_2$ formation. Moreover, protein kinase C (PKC) inhibition suppressed EGCG-induced p38 MAPK activation, COX-2 expression, and $PGE_2$ accumulation. The same pathways as those obtained in the astrocytoma cells were active in primary rat astrocytes, suggesting the relevance of the findings. Collectively, our results demonstrate for the first time that PLD isozymes mediate EGCG-induced COX-2 expression through PKC and p38 in immortalized astroglial line and normal astrocyte cells.

  • PDF

The inhibitory mechanism of crude saponin fraction from Korean Red Ginseng in collagen-induced platelet aggregation

  • Jeon, Bo Ra;Kim, Su Jung;Hong, Seung Bok;Park, Hwa-Jin;Cho, Jae Youl;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.279-285
    • /
    • 2015
  • Background: Korean Red Ginseng has been used as a traditional oriental medicine to treat illness and to promote health for several thousand years in Eastern Asia. It is widely accepted that ginseng saponins, ginsenosides, are the major active ingredients responsible for Korean Red Ginseng's therapeutic activity against many kinds of illness. Although the crude saponin fraction (CSF) displayed antiplatelet activity, the molecular mechanism of its action remains to be elucidated. Methods: The platelet aggregation was induced by collagen, the ligand of integrin ${\alpha}_{II}{\beta}_I$ and glycoprotein VI. The crude saponin's effects on granule secretion [e.g., calcium ion mobilization and adenosine triphosphate (ATP) release] were determined. The activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated protein kinase 1/2 (ERK1/2), c-Jun N-terminal kinases (JNKs), and p38 MAPK, and phosphoinositide 3-kinase (PI3K)/Akt was analyzed by immunoblotting. In addition, the activation of integrin ${\alpha}_{II}b{\beta}_{III}$ was examined by fluorocytometry. Results: CSF strongly inhibited collagen-induced platelet aggregation and ATP release in a concentration-dependent manner. It also markedly suppressed $[Ca^{2+}]_i$ mobilization in collagen-stimulated platelets. Immunoblotting assay revealed that CSF significantly suppressed ERK1/2, p38, JNK, PI3K, Akt, and mitogen-activated protein kinase kinase 1/2 phosphorylation. In addition, our fraction strongly inhibited the fibrinogen binding to integrin ${\alpha}_{IIb}{\beta}_3$. Conclusion: Our present data suggest that CSF may have a strong antiplatelet property and it can be considered as a candidate with therapeutic potential for the treatment of cardiovascular disorders involving abnormal platelet function.