• 제목/요약/키워드: p27-E2 fusion protein

검색결과 6건 처리시간 0.019초

Direct characterization of E2-dependent target specificity and processivity using an artificial p27-linker-E2 ubiquitination system

  • Ryu, Kyoung-Seok;Choi, Yun-Seok;Ko, Jun-Sang;Kim, Seong-Ock;Kim, Hyun-Jung;Cheong, Hae-Kap;Jeon, Young-Ho;Choi, Byong-Seok;Cheong, Chae-Joon
    • BMB Reports
    • /
    • 제41권12호
    • /
    • pp.852-857
    • /
    • 2008
  • Little attention has been paid to the specificity between E2 and the target protein during ubiquitination, although RING-E3 induces a potential intra-molecular reaction by mediating the direct transfer of ubiquitin from E2 to the target protein. We have constructed artificial E2 fusion proteins in which a target protein (p27) is tethered to one of six E2s via a flexible linker. Interestingly, only three E2s (UbcH5b, hHR6b, and Cdc34) are able to ubiquitinate p27 via an intra-molecular reaction in this system. Although the first ubiquitination of p27 (p27-Ub) by Cdc34 is less efficient than that of UbcH5b and hHR6b, the additional ubiquitin attachment to p27-Ub by Cdc34 is highly efficient. The E2 core of Cdc34 provides specificity to p27, and the residues 184-196 are required for possessive ubiquitination by Cdc34. We demonstrate direct E2 specificity for p27 and also show that differential ubiquitin linkages can be dependent on E2 alone.

대장균에서 발현된 인간 Cytochrome P450 1A1과 Rat NADPH-P450 Reductase와의 Fusion Protein의 효소 특성 연구 (Enzymatic Properties of a Fusion Protein between Human Cytochrome P450 1A1 and Rat NADPH-P450 Reductase Expressed in Escherichia Coli)

  • 천영진;정태천;이현걸;한상섭;노정구
    • Toxicological Research
    • /
    • 제12권2호
    • /
    • pp.155-161
    • /
    • 1996
  • The enzymatic properties for NADPH-P450 reductase domain of a fusion protein between human cytochrome P450 1A1 and rat NADPH-P450 reductase expressed in Escherichia coli were investigated. The fusion plasmid pCW/1A1OR-expressed E. coli membrane showed high NADPH-cytochrome c reductase activity ($830.1\pm 85.8 nmol\cdot min^{-1}\cdot mg protein^{-1}$), while pCW control vector and P 450 1A1 expression vector pCW/1A1 showed relatively quite low activity ($4.35\pm 0.49, 3.27\pm 0.50 nmol\cdot min^{-1}\cdot mg protein^{-1}$, respectively). The kinetic curves for NADPH-cytochrome c reductase followed typical Michaelis-Menten kinetics. The $K_{max}$ and $V_{max}$ for NADPH-dependent reductase activity were $8.24\pm 2.61\mu $and $817.9\pm 60.8 nmol\cdot min^{-1}\cdot mg protein^{-1}$, respectively, whereas those for cytochrome c-dependent reductase activity were $19.97\pm 2.86\mu M$ and $1303.5\pm 67.1 nmol\cdot min^{-1}\cdot mg protein^{-1}$. The reductase activities were also compared with those of rat, porcine and human liver microsomes. The activity of pCW/ 1A1OR-expressed E. coli membrane was 15.2-fold higher than that of rat liver microsome. Treatment with benzo(a)pyrene, 7-ethoxyresorufin and $\alpha$-naphthofiavone which are known as specific substrates or inhibitor for human P450 1A1 increased NADPH-cytochrome c reductase activity of fusion protein in E. coli membrane dose-dependently. These results demonstrate that the membrane topology of fused enzyme may be important for activity of its NADPH-P450 reductase domain.

  • PDF

일본뇌염 바이러스 국내분리주 K94P05의 NS4 부위 분석 (Analysis of the NS4 Region of Japanese Encephalitis virus K94P05 Isolated from Korea)

  • 김은정;남재환;박용근;조해월
    • 대한바이러스학회지
    • /
    • 제27권2호
    • /
    • pp.197-207
    • /
    • 1997
  • To investigate the NS4 region of JEV, NS4 cDNA of K94P05 (JEV strain isolated from Korea in 1994) was amplified by RT-PCR and analyzed by sequencing PCR product. Genomic size of NS4 was 1212bp and nucleotide sequence was compared with that of other JEV strains. Nucleotide homology between JaOAr582 and K94P05 was 91.1% and that between Beijing and K94P05 was 89.8%, respectively. But the nucleotide sequence of E region of JaOAr582 and K94P05 showed 97.0% homology and that of Beijing and K94P05 did 95.8% homology. NS4 protein was expressed as a form of fusion protein by a prokaryotic expression system. The induced fusion product showed a lower molecular weight than predicted size and remained insoluble. The NS4 protein might be cleavaged by E. coli protease. Concluding above results, high hydrophobicity of the NS4 protein supported the fact that this protein played a role as a membrane component and the poor nucleotide sequence conservativity among JEV strains suggested that this region might be important to adapt each viral growth environment.

  • PDF

한국형 사람 Calicivirus Replicase 단백의 발현 및 항원성 평가 (Expression and Antigenicity of Replicase Protein from Snow Mountain-Like Caliciviruses, Korean Isolates)

  • 장미윤;양재명;김경희
    • 대한바이러스학회지
    • /
    • 제27권2호
    • /
    • pp.151-160
    • /
    • 1997
  • In view of the potential of replicase protein as a diagnostic reagent for human caliciviruses (HuCVs), we have cloned and over-expressed this gene from the Snow Mountain-like Korean strains in Escherichia coli as a fusion protein with glutathione S-transferase (GST), and described the preliminary antigenic characterization of the recombinant products. Each 470bp fragment corresponding to highly conserved region of RNA-dependent RNA polymerase was generated by RT-PCR from stools of two diarrheal children, cloned in pMOSBlue T-vector, and subcloned between the EcoRI and SalI restriction sites of pGEX-4T-3, a GST gene fusion vector, yielding $pGCV_{pol}$. This construct expressed a Snow Mountain-like HuCV replicase under the control of the IPTG-inducible tac promoter. An extract prepared by sonication of the E. coli cell inclusion bodies bearing $pGCV_{pol}$ products was purified and analyzed by SDS-PAGE. After Coomassie blue staining, it was shown that the recombinant replicase migrated on the gels with an approximate molecular mass of 46.5 kDa, that was subsequently cleaved into a 26 kDa GST fragment and a 20.5 kDa replicase protein upon digestion with thrombin protease. The replicase was recognized on immunoblotting with the sera from symptomatic children with the HuCV-associated diarrhea but not by asymptomatic sera from adults. The results presented the first biological activity of individually expressed HuCV replicase subunit and provided important reagents for diagnosis of HuCV infection.

  • PDF

Clinical Implication of Aortic Wall Biopsy in Aortic Valve Disease with Bicuspid Valve Pathology

  • Kim, Yong Han;Kim, Ji Seong;Choi, Jae-Woong;Chang, Hyoung Woo;Na, Kwon Joong;Kim, Jun Sung;Kim, Kyung-Hwan
    • Journal of Chest Surgery
    • /
    • 제49권6호
    • /
    • pp.443-450
    • /
    • 2016
  • Background: Although unique aortic pathology related to bicuspid aortic valve (BAV) has been previously reported, clinical implications of BAV to aortopathy risk have yet to be investigated. We looked for potential differences in matrix protein expressions in the aortic wall in BAV patients. Methods: Aorta specimens were obtained from 31 patients: BAV group (n=27), tricuspid aortic valve (TAV) group (n=4). The BAV group was categorized into three subgroups: left coronary sinus-right coronary sinus (R+L group; n=13, 42%), right coronary sinus-non-coronary sinus (R+N group; n=8, 26%), and anteroposterior (AP group; n=6, 19%). We analyzed the expression of endothelial nitric oxide synthase (eNOS), matrix metalloproteinase (MMP)-9, and tissue inhibitor of matrix metalloproteinase (TIMP)-2. Results: Based on the mean value of the control group, BAV group showed decreased expression of eNOS in 72.7% of patients, increased MMP-9 in 82.3%, and decreased TIMP in 79.2%. There was a higher tendency for aortopathy in the BAV group: eNOS $(BAV:TAV)=53%{\pm}7%:57%{\pm}11%$, MMP-9 $(BAV:TAV)=48%{\pm}10%:38%{\pm}1%$. The AP group showed lower expression of eNOS than the fusion (R+L, R+N) group did; $48%{\pm}5%$ vs. $55%{\pm}7%$ (p=0.081). Conclusion: Not all patients with BAV had expression of aortopathy; however, for patients who had a suspicious form of bicuspid valve, aortic wall biopsy could be valuable to signify the presence of aortopathy.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 춘계학술대회 및 임시총회
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF