References
- Pickart, C. M. (2004) Back to the future with ubiquitin. Cell 116, 181-190 https://doi.org/10.1016/S0092-8674(03)01074-2
- Brzovic, P. S., Lissounov, A., Christensen, D. E., Hoyt, D. W. and Klevit, R. E. (2006) A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1- directed ubiquitination. Mol. Cell 21, 873-880 https://doi.org/10.1016/j.molcel.2006.02.008
- Hao, B., Zheng, N., Schulman, B. A., Wu, G., Miller, J. J., Pagano, M. and Pavletich, N. P. (2005) Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF (Skp2) ubiquitin ligase. Mol. Cell 20, 9-19 https://doi.org/10.1016/j.molcel.2005.09.003
- Wu, G., Xu, G., Schulman, B. A., Jeffrey, P. D., Harper, J. W. and Pavletich, N. P. (2003) Structure of a beta-TrCP1- Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF (beta-TrCP1) ubiquitin ligase. Mol. Cell 11, 1445-1456 https://doi.org/10.1016/S1097-2765(03)00234-X
- Christensen, D. E., Brzovic, P. S. and Klevit, R. E. (2007) E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol 14, 941-948 https://doi.org/10.1038/nsmb1295
- Catic, A., Collins, C., Church, G. M. and Ploegh, H. L. (2004) Preferred in vivo ubiquitination sites. Bioinformatics 20, 3302-3307 https://doi.org/10.1093/bioinformatics/bth407
- Shirane, M., Harumiya, Y., Ishida, N., Hirai, A., Miyamoto, C., Hatakeyama, S., Nakayama, K. and Kitagawa, M. (1999) Down-regulation of p27(Kip1) by two mechanisms, ubiquitin- mediated degradation and proteolytic processing. J. Biol. Chem. 274, 13886-13893 https://doi.org/10.1074/jbc.274.20.13886
- Butz, N., Ruetz, S., Natt, F., Hall, J., Weiler, J., Mestan, J., Ducarre, M., Grossenbacher, R., Hauser, P., Kempf, D. and Hofmann, F. (2005) The human ubiquitin-conjugating enzyme Cdc34 controls cellular proliferation through regulation of p27Kip1 protein levels. Exp. Cell Res. 303, 482- 493 https://doi.org/10.1016/j.yexcr.2004.10.008
- McKenna, S., Spyracopoulos, L., Moraes, T., Pastushok, L., Ptak, C., Xiao, W. and Ellison, M. J. (2001) Noncovalent interaction between ubiquitin and the human DNA repair protein Mms2 is required for Ubc13-mediated polyubiquitination. J. Biol. Chem. 276, 40120-40126 https://doi.org/10.1074/jbc.M102858200
- Matunis, M. J. (2002) On the road to repair: PCNA encounters SUMO and ubiquitin modifications. Mol. Cell 10, 441-442 https://doi.org/10.1016/S1097-2765(02)00653-6
- Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503-533 https://doi.org/10.1146/annurev.biochem.70.1.503
- Wu, K., Chen, A., Tan, P. and Pan, Z. Q. (2002) The Nedd8-conjugated ROC1-CUL1 core ubiquitin ligase utilizes Nedd8 charged surface residues for efficient polyubiquitin chain assembly catalyzed by Cdc34. J. Biol. Chem. 277, 516-527 https://doi.org/10.1074/jbc.M108008200
- Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921-926 https://doi.org/10.1038/nbt849
- Peng, J. (2008) Evaluation of proteomic strategies for analyzing ubiquitinated proteins. BMB Rep. 41, 177-183 https://doi.org/10.5483/BMBRep.2008.41.3.177
- Melchior, F., Schergaut, M. and Pichler, A. (2003) SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612-618 https://doi.org/10.1016/j.tibs.2003.09.002
- Lin, D., Tatham, M. H., Yu, B., Kim, S., Hay, R. T. and Chen, Y. (2002) Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740-21748 https://doi.org/10.1074/jbc.M108418200
- Ha, B. H. and Kim, E. E. (2008) Structures of proteases for ubiqutin and ubiquitin-like modifiers. BMB Rep. 41, 435-443 https://doi.org/10.5483/BMBRep.2008.41.6.435
- Seol, J. H., Feldman, R. M., Zachariae, W., Shevchenko, A., Correll, C. C., Lyapina, S., Chi, Y., Galova, M., Claypool, J., Sandmeyer, S., Nasmyth, K. and Deshaies, R. J. (1999) Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13, 1614-1626 https://doi.org/10.1101/gad.13.12.1614
- Oh, K. J., Kalinina, A., Wang, J., Nakayama, K., Nakayama, K. I. and Bagchi, S. (2004) The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J. Virol. 78, 5338-5346 https://doi.org/10.1128/JVI.78.10.5338-5346.2004
- Brzovic, P. S., Keeffe, J. R., Nishikawa, H., Miyamoto, K., Fox, D., 3rd, Fukuda, M., Ohta, T. and Klevit, R. (2003) Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl. Acad. Sci. U.S.A. 100, 5646-5651
- Petroski, M. D. and Deshaies, R. J. (2005) Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin- RING ubiquitin-ligase complex SCF-Cdc34. Cell 123, 1107-1120 https://doi.org/10.1016/j.cell.2005.09.033
- Rodrigo-Brenni, M. C. and Morgan, D. O. (2007) Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127-139 https://doi.org/10.1016/j.cell.2007.05.027
- Hochstrasser, M. (1996) Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405-439 https://doi.org/10.1146/annurev.genet.30.1.405
- VanDemark, A. P., Hofmann, R. M., Tsui, C., Pickart, C. M. and Wolberger, C. (2001) Molecular insights into polyubiquitin chain assembly: crystal structure of the Mms2/Ubc13 heterodimer. Cell 105, 711-720 https://doi.org/10.1016/S0092-8674(01)00387-7
- Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W. and Gygi, S. P. (2006) Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8, 700-710 https://doi.org/10.1038/ncb1436
- Tan, P., Fuchs, S. Y., Chen, A., Wu, K., Gomez, C., Ronai, Z. and Pan, Z. Q. (1999) Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol. Cell 3, 527-533 https://doi.org/10.1016/S1097-2765(00)80481-5
Cited by
- Molecular Dynamics Reveal the Essential Role of Linker Motions in the Function of Cullin–RING E3 Ligases vol.396, pp.5, 2010, https://doi.org/10.1016/j.jmb.2010.01.022
- Structure and interaction of ubiquitin-associated domain of human Fas-associated factor 1 vol.18, pp.11, 2009, https://doi.org/10.1002/pro.237
- Association of the Disordered C-terminus of CDC34 with a Catalytically Bound Ubiquitin vol.407, pp.3, 2011, https://doi.org/10.1016/j.jmb.2011.01.047
- Cell Adhesion Molecules and Ubiquitination—Functions and Significance vol.5, pp.1, 2015, https://doi.org/10.3390/biology5010001
- E2 enzymes: more than just middle men vol.26, pp.4, 2016, https://doi.org/10.1038/cr.2016.35
- Synergistic effect of two E2 ubiquitin conjugating enzymes in SCFhFBH1 catalyzed polyubiquitination vol.48, pp.1, 2015, https://doi.org/10.5483/BMBRep.2015.48.1.057
- 60th residues of ubiquitin and Nedd8 are located out of E2-binding surfaces, but are important for K48 ubiquitin-linkage vol.583, pp.20, 2009, https://doi.org/10.1016/j.febslet.2009.09.034
- Differential Ubiquitin Binding by the Acidic Loops of Ube2g1 and Ube2r1 Enzymes Distinguishes Their Lys-48-ubiquitylation Activities vol.290, pp.4, 2015, https://doi.org/10.1074/jbc.M114.624809
- Cytoplasmic domain of NCAM140 interacts with ubiquitin-fold modifier-conjugating enzyme-1 (Ufc1) vol.324, pp.2, 2014, https://doi.org/10.1016/j.yexcr.2014.04.003